Home | CVBR | BIDMC | HMS

Erzsébet Ravasz Regan

 Home 
 
 Research 
 Regulatory Networks 
 Configuration networks 
 Hierarchy in networks 
 Metabolic networks 
 Synchronization 
 Teaching 
 CVBR Course 
 CVBR Journal Club - Noise  
 Teaching Experience 
 Teaching Statement 
   
 Publications 
 CV 
 Curriculum Vitae 
 Publications 
 Presentations 
   
 NetSciReg'13 
 NetSciReg'14 
 NetSciReg'15 
Publications

  • Peer Reviewed Articles (Citations: ISI - 3,594; Google Scholar - 6,966; H-index - 11):

    1. H. Dharaneeswaran, R. Abid, L. Yuan, D. Dupuis, D. Beeler, KC Spokes, L. Janes, T. Sciuto, P. Kang, SC. Jaminet, A. Dvorak, M.A. Grant, E. Ravasz Regan, W. C. Aird, FoxO1-mediated Activation of Akt plays a critical role in vascular homeostasis, Circulation Research 115, 238-51, 2014;

    2. Bentley K, Philippides A, Ravasz Regan E, Do Endothelial Cells Dream of Eclectic Shape?, Developmental Cell 29, 146-158 (2014);

    3. K. Bentley, K. Harrington, E. Ravasz Regan, Can active perception generate bistability? Heterogeneous collective dynamics and vascular patterning, ALIFE 14: The Fourteenth International Conference on the Synthesis and Simulation of Living Systems 14, 328-335, 2014;

    4. C. Priolo, S. Pyne, J. Rose, E. Ravasz Regan, G. Zadra, C. Photopoulos, S. Cacciatore, D. Schultz, N. Scaglia, J. McDunn, A. De-Marzo, M. Loda, AKT1 and MYC Induce Distinctive Metabolic Fingerprints in Human Prostate Cancer, Cancer Research, 2014 (in press).

    5. Dávid Deritei, Zsolt Lázár, István Papp, Ferenc Járai-Szabó, Robert Sumi, Levente Varga, Erzsébet Ravasz Regan, Mária-Magdolna Ercsey-Ravasz, Community detection by graph Voronoi diagrams, New Journal of Physics 16, 063007, 2014; Video Abstract

    6. Kurniati NF, Jongman RM, von Hagen F, Spokes KC, Moser J, Ravasz Regan E, Krenning G, Moonen JRAJ, Harmsen MC, Struys MMRF, Hammes HP, Zijlstra JG, Aird WC, Heeringa P, Molema G, van Meurs M. The flow dependency of Tie2 expression in endotoxemia, Intensive Care Medicine 39, 1262-1271, 2013;

    7. Ravasz Regan E*, Aird WC. Dynamical systems approach to endothelial heterogeneity, Circulation Research, 111, 110-130 (2012);

    8. Liu J, Yuan L, Molema G, Regan E, Janes L, Beeler D, Spokes KC, Minami T, Oettgen P, Aird WC, Vascular bed-specific regulation of the von Willebrand factor promoter in the heart and skeletal muscle, Blood 117(1):342-51 (2011);

    9. Jin E, Liu J, Suehiro J, Okada Y, Yuan L, Nikolova-Krstevski V, Yano K, Janes L, Beeler D, Spokes KC, Regan E, Shih SC, Oettgen P, Minami T, Aird WC. Differential Roles for ETS, CREB and EGR Binding Sites in Mediating VEGF Receptor 1 Expression in Vivo, Blood 114(27):5557-66 (2009).

    10. E. Ravasz, A.-L. Barabási, Hierarchical organization in complex networks, Phys. Rev. E, 67, 026112 (2003);

    11. S. Y. Gerdes, M. D. Scholle, J. W. Campbell, G. Balázsi, E. Ravasz, M. D. Daugherty, A. L. Somera, N. C. Kyrpides, I. Anderson, M. S. Gelfand, A. Bhattacharya, V. Kapatral, M. D'Souza, M. V. Baev, Y. Grechkin, F. Mseeh, M. Y. Fonstein, R. Overbeek, A.-L. Barabási, Z. N. Oltvai, and A. L. Osterman, Experimental Determination and System Level Analysis of Essential Genes in Escherichia coli MG1655, Journal of Bacteriology, 185, 5673 (2003);

    12. E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai and A.-L. Barabási, Hierarchical organization of modularity in metabolic networks, Science, 297, 1551 (2002); Supplementaty Material.

    13. I. Farkas, I. Derényi, H. Jeong, Z. Néda, Z. N. Oltvai, E. Ravasz, A. Schubert, A.-L. Barabási and T. Vicsek, Networks in life: Scaling properties and eigenvalue spectra, Physica A, 314, 25 (2002);

    14. A.-L. Barabási, H. Jeong, Z. Néda, E. Ravasz, A. Schubert and T. Vicsek, Evolution of the social network of scientific collaborations, Physica A, 311, 590 (2002);

    15. A.-L. Barabási, E. Ravasz and T. Vicsek, Deterministic scale-free networks, Physica A, 299, 559 (2001);

    16. Z. Néda, E. Ravasz, T. Vicsek, Y. Brechet, and A.-L. Barabási, The sound of many hands clapping, Nature, 403, 850 (2000);

    17. Z. Néda, E. Ravasz, T. Vicsek, Y. Brechet, and A.-L. Barabási, Physics of the rhythmic applause, Phys. Rev. E, 61, 6987 (2000);

    18. Z. Néda, Á. Rusz, E. Ravasz, P. Lakdawala, and P. M. Gade, Spatial stochastic resonance in one-dimensional Ising systems, Phys. Rev. E, 60, R3463 (1999);

  • Book chapters:

    1. Ravasz Regan E. Hierarchical Modularity in Biological Networks. In: Buchanan, Calderelli, De Los Rios, Rao and Vendruscolo , editors. Networks in Cell Biology. Cambridge University Press; 2010 (SBN-13: 978-0-521-88273-6).

    2. Ravasz Regan E. Networks: Structure and Dynamics. In: Meyers RA, editor in chief. Encyclopedia of Complexity and System Science. Springer; 2009 (SBN-13: 978-0-387-75888-6).

    3. Ravasz E. Detecting hierarchical modularity in biological networks. In: McDermott J, Samudrala R, Bumgarner R, Montgomery K, editors. Computational Systems Biology. Humana Press; 2009. p. 145-160 (SBN-10: 1588299058).

    4. S. Wuchty, Ravasz E. and A.-L. Barabási, The Architecture of Biological Networks, in: T.S. Deisboeck, J. Yasha Kresh and T.B. Kepler (eds.), Complex Systems in Biomedicine, Kluwer Academic Publishing, New York (2005), ISBN: 0306477874.

  • Proceedings:

    1. A.-L. Barabási, Z. Dezső, Ravasz E., S. H. Yook, and Z. N. Oltvai, Scale-free and hierarchical structures in complex networks, AIP Conf. Proc. 661, 1 (2003); MODELING OF COMPLEX SYSTEMS: Seventh Granada Lectures, Granada, Spain, 2002, Melville, New York;

    2. A.-L. Barabási, Ravasz E., and Z. N. Oltvai, Hierarchical Organization of Modularity in Complex Networks, Lecture Notes in Physics 625, 46 (2003); R. Pastor-Satorras, J.M. Rubi,and A. Diaz-Guilera (eds.), Proc. of the XVIII Sitges Conference on Statistical Mechanics, Sitges, Barcelona, Spain, 2002, Springer, Berlin;

  • In Resubmission, in Preparation or Posted on ArXiv:

    1. L. Yuan, G. Chan, D. Beeler, L. Janes, K.C. Spokes, A. Mojiri, W.J. Adams, T. Sciuto, G. Garcia-Cardeña, G. Molema, N. Jahroudi, P.A. Marsden, A. Dvorak, E. Ravasz Regan E*, W. C. Aird*, Organ-specific stochastic phenotype switching is required for endothelial health, in resubmission to Nature Communications (* co-corresponding authors), 2014.

    2. D. Deritei, M.M. Ercsey-Ravasz, E. Ravasz Regan E*, Organizing princliples of dynamical modularity in biological regulation, in preparation (* corresponding author), 2014.

    3. H. Wada, M. Ii, T. Kohro, T.E. Sciuto, E. Ravasz Regan, S. Hall, W. Adams W, D. Li, A.N. Stratman, A. Lebastchi, M. Sekino, Y. Ohta, T. Hamakubo, S. Ihara, T. Asahara, S. Ueno, D. W. Losordo, C. V. Carman, M. Gunel, G. Tellides, H. Weiler, S. C. Shih, G. Davis, G. Garcia-Cardena, T. Kodama, A. M. Dvorak, Y. Wada, W. C. Aird, The brain arachnoid exhibits a mixed vascular cell phenotype and provides an anatomical niche for multi-lineage progenitor cells, in preparation, 2014.

    4. E. Ravasz, S. Gnanakaran, Zoltán Toroczkai, Network Structure of Protein Folding Pathways, arXiv:0705.0912 [q-bio.BM] (2007);