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INTRODUCTION

Understanding complex systems often requires a bottom-up approach, breaking the

system into small and elementary constituents and mapping out the interactions be-

tween these components. In many cases, the myriads of components and interactions

are best characterized as networks. For example, the society is a network of people

connected by various links, including friendships (Milgram, 1967), collaborationships

(Kochen, 1989; Wasserman & Faust, 1994), sexual contacts (Liljeros et al., 2001) or

scientific co-authorships (Redner, 1998; Newman, 2001). Electronic communication

relies on two very different networks: the physical network wiring the routers to-

gether (Internet) (Faloutsos, Faloutsos & Faloutsos, 1999; Vázquez, Pastor-Satorras

& Vespignani, 2002) and the web of homepages linked by URLs (World Wide Web)

(Albert, Jeong & Barabási, 1999; Lawrence & Giles, 1999; Broder et al., 2000).

Airline, cell-phone, power-grid or business networks represent further examples of

complex networks of technological, scientific or economic interest.

In biological systems networks emerge in many disguises, from food webs in

ecology to various biochemical nets in molecular biology. In particular, the wide range

of interactions between genes, proteins and metabolites in a cell are best represented

by various complex networks. During the last decade, genomics has produced an

incredible quantity of molecular interaction data, contributing to maps of specific

cellular networks. The emerging fields of transcriptomics and proteomics have the

potential to join the already extensive data sources provided by the genome wide

analysis of gene expression at the mRNA and protein level (Pandey & Mann, 2000;

Caron et al., 2001; Burge, 2001). Indeed, extensive protein-protein interaction maps

have been generated for a variety of organisms including viruses (Flajolet et al., 2000;

McGraith et al., 2000), prokaryotes, like H.pylori (Rain et al., 2001) and eukaryotes,

like S. cerevisiae (Ito et al., 2000; Ito et al., 2001; Schwikowski, Uetz & Fields,

2000; Uetz et al., 2000; Gavin et al., 2002; Ho et al., 2002; Jeong et al., 2001)
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and C.elegans (Walhout et al., 2000). Beyond the current focus on uncovering the

structure of genomes, proteomes and interactomes of various organisms, some of the

most extensive datasets are the metabolic maps (Overbeek et al., 2000; Karp et al.,

2000), catalyzing an increasing number of studies focusing on the architecture of the

metabolism (Jeong et al., 2000; Fell & Wagner, 2000; Wagner & Fell, 2001).

Networks offer us a new way to categorize systems of very different origin under a

single framework. This approach has uncovered unexpected similarities between the

organization of various complex systems, indicating that the networks describing them

are governed by generic organization principles and mechanisms. Understanding the

driving forces which invest different networks with similar topological features enables

systems biology to combine the numerous details about molecular interactions into a

single framework, offering means to address the structure of the cell as a whole.

BASIC NETWORK FEATURES

A node’s degree (or connectivity), giving the number of links k the node has, is the

most elementary network measure. For example, in Fig. 1 nodes i and j have exactly

three links (k = 3). The overall graph, however, is characterized by the average

degree, 〈k〉, which has the value 〈k〉 = 2.6 for this example. Yet, the average degree

does not capture the potential degree variations present in the network. This is better

characterized by the degree distribution, P (k), which gives the number of nodes with

exactly k links.

Planing a trip from Anchorage, Alaska to Alice Springs in the outbacks of Aus-

tralia requires finding the shortest paths through a particular airline’s transportation

network. As in most networks, there are multiple paths between any two nodes i and

j, a useful distance measure is the length of the shortest path, lij (see Fig. 1). The
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mean path length defined as

〈l〉 =
2

N(N − 1)

N
∑

i=1

lij , (1)

offering a measure of the network’s navigability. A network which can be ‘crossed’ by a

relatively small number of steps is often referred to display the ‘small world’ property,

first illustrated on social networks, indicating that two randomly chosen individuals

can be connected by only six intermediate acquaintances (Milgram, 1967).

Nodes in many real systems exhibit a tendency to cluster, which can be quantified

using the clustering coefficient (Watts & Strogatz, 1998), a measure of the degree to

which the neighbors of a particular node are connected to each other (Fig. 2). For

example, in a friendship network C reflects the degree to which friends of a particular

person are friends with each other as well. Formally, the clustering coefficient of node

i is defined as

Ci =
2ni

ki(ki − 1)
, (2)

where ni denotes the number of links connecting the ki neighbors of node i to each

other. Accordingly, we can define the average clustering coefficient as

〈C〉 =
1

N

N
∑

i=1

Ci. (3)

An additional important measure of the network’s structure is the function C(k),

defined as the average clustering coefficient of all nodes with k links. If C(k) is

independent of k the network is either homogeneous or it is dominated by numerous

small tightly linked clusters. In contrast, if C(k) follows C(k) ∼ k−1, the network

has a hierarchical architecture meaning that sparsely connected nodes are part of

highly clustered areas (Ravasz et al., 2002; Ravasz & Barabási, 2002; Dorogovtsev,

Goltsev & Mendes, 2002; Jung, Kim & Kahng, 2002). In such hierarchical networks,

communication between the different highly clustered neighborhoods are maintained

by a few hubs.
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As we will see below, the degree distribution P (k) and the k dependence of C(k)

can have generic features, allowing us to classify various network. Parameters such

as the average degree 〈k〉, average path length 〈l〉 and average clustering coefficient

〈C〉 characterize the unique properties of the particular network under consideration,

and therefore are less generic.

NETWORKS MODELS

The main role of the network models is to explain the emergence and behavior of

some of the most important network characteristics. As they play a crucial role in

shaping our understanding of complex networks, we need to pay attention to some of

the more important models.

Random Networks

While graph theory initially focused on regular graphs, since the 1950’s large networks

with no apparent design principles were described as random graphs (Bollobás, 1985),

proposed as the simplest and most straightforward realization of a complex network.

According to the Erdős-Rényi (ER) model of random graphs (Erdös & Rényi, 1960),

we start with N nodes and connect each pair of nodes with probability p, creating

a graph with approximately pN(N − 1)/2 randomly distributed links (first column

in Fig. 3). The ER graph has an exponential degree distribution and exhibits the

small-world property. Indeed, in the ER network, most nodes have approximately

the same number of links, k ≈ 〈k〉 (first column in Fig. 4), and the mean path length

is proportional to the network size, L ∼ logN .

The growing interest in complex systems prompted many scientists to ask a

simple question: are real networks behind diverse complex systems, like the cell,

fundamentally random?

Scale-free Networks
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A highly nontrivial development in our understanding of complex networks was the

discovery that for most large networks, including the metabolic and protein interac-

tion networks (Jeong et al., 2000; Jeong et al., 2001), the degree distribution follows

a power-law

P (k) ∼ k−γ . (4)

These networks are called scale-free, as a power-law does not support the existence

of a characteristic scale. Two mechanisms, absent from the classical random net-

work model, are responsible for the emergence of this power-law degree distribution

(Barabási & Albert, 1999; Barabási, Albert & Jeong, 1999). First, most networks

grow through the addition of new nodes, that link to nodes already present in the

system. Second, in most real networks there is a higher probability to link to a node

with a large number of connections, a property called preferential attachment. The

scale-free model introduced by Barabási and Albert (BA) (second columns in Fig. 3

and 4) incorporates these features. Starting from a small graph, at each time step a

node with m links is added to the network, connecting to a previously present node

i with probability

Πi = ki
/

∑

j

kj , (5)

where ki is the degree of node i. The network generated by this growth process will

be scale-free with degree exponent γ = 3. In a scale-free network the probability

that a node is highly connected (k À 〈k〉) is statistically more significant than in a

random graph. Thus, the network’s properties are often determined by a relatively

small number of highly connected nodes or hubs. An important consequence of the

hubs is that scale-free networks exhibit high tolerance to random perturbations but

are sensitive to targeted attack on the highly connected nodes (Albert, Jeong &

Barabási, 2000). Accordingly, failure of randomly selected nodes cannot destroy the

network’s integrity. However, the systematic removal of the hubs will rapidly fragment

the network. This feature is of particular importance for biological systems, since it
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reflects the biochemical network’s resilience against random mutations. Therefore,

highly connected nodes in biochemical networks might be potential candidates for

drug targets.

The presence of hubs in a scale-free network has a fundamental impact on virus

spreading as well. Classical epidemiological models predict that infectious diseases

with transmission probability under an epidemic threshold will inevitably die out.

However, in scale-free networks the epidemic threshold is reduced to zero (Pastor-

Satorras & Vespignani, 2001). Thus, as some social and sexual networks are known

to exhibit a scale-free topology (Liljeros et al., 2001), even extremely weakly infectious

viruses can spread and prevail, making random immunization ineffective.

Hierarchical Networks

Many real networks are expected to be fundamentally modular, meaning that the

network can be seamlessly partitioned into a collection of modules. Each module is

expected to perform an identifiable task, separable from the function of other modules

(Hartwell et al., 1999; Wolf, Karev & Koonin, 2002; Lauffenburger, 2000; Shen-Orr

et al., 2002). Therefore, we must reconcile the scale-free property with the network’s

potential modularity. Numerical simulations indicate that neither the random nor

the scale-free network model are modular.

In order to account for the coexistence of modularity, local clustering and scale-

free topology in real systems, we have to assume that clusters combine in an itera-

tive manner, generating a hierarchical network (Ravasz & Barabási, 2002; Barabási,

Ravasz & Vicsek, 2001). Such networks emerge from an iterative duplication and in-

tegration of clustered nodes, a process which in principle can be repeated indefinitely.

Our starting point is a small cluster of four densely linked nodes. Next we generate

three replicas of this hypothetical module and connect the three external nodes of the

replicated clusters to the central node of the old cluster, obtaining a large 16-node



S. Wuchty, E. Ravasz and A.-L. Barabaśi: The Architecture of Biological Networks8

module. Subsequently, we again generate three replicas of this 16-node module, and

connect the 16 peripheral nodes to the central node of the old module, obtaining a

new module of 64 nodes (third column of Fig. 3).

The hierarchical network model seamlessly integrates a scale-free topology with

an inherent modular structure by generating a network that has a power law degree

distribution with degree exponent γ = 1+ ln 4/ ln 3 = 2.26. Yet, the most important

signature of this hierarchical modularity is the fact that the clustering coefficient,

C(k), scales as k−1 (third column of Fig. 4). Note, that for the network generated

by the ER and BA models C(k) is independent of k.

Modularity does not, however, imply clear-cut subnetworks which are linked in

well-defined ways. In fact, the boundaries of modules are often considerably blurred,

triggered by highly connected nodes which interconnect modules.

BIOLOGICAL NETWORKS

Metabolic Networks

The structure of metabolic networks was addressed by two independent studies by Fell

and Wagner and Jeong et al. Fell and Wagner assembled a list of stoichiometric equa-

tions that represent the central routes of the energy metabolism and small-molecule

building block synthesis in E.coli (Fell & Wagner, 2000; Wagner & Fell, 2001). A

substrate graph was defined by the nodes representing all metabolites, two substrates

being considered linked if they occurred in the same reaction. They found the sub-

strate graph to be scale-free with glutamate, coenzyme A, 2-oxoglutarate, pyruvate and

glutamine having the highest degree which were viewed as an evolutionary core of the

E.coli.

At the same time, Jeong et al. analyzed the metabolic networks of 43 organisms

representing all three domains of life (Jeong et al., 2000), finding that the power-law

degree distribution for both incoming and outgoing edges holds for organisms of all



S. Wuchty, E. Ravasz and A.-L. Barabaśi: The Architecture of Biological Networks9

kingdoms. Furthermore, the average separation between nodes has the same value for

all organisms under consideration, regardless of the number of substrates found in the

given species. Interestingly, the ranking of the most connected substrates is largely

identical for all organisms. A recent study comparing the system-level properties

of metabolic networks in various organisms indicates that the structural features of

these networks are more conserved than the components themselves (Podani et al.,

2001; Wolf, Karev & Koonin, 2002).

Protein Interaction Networks

Protein interactions offer another opportunity to study cellular networks, considering

proteins as nodes and physical interactions (binding) as links. It has been shown that

interaction networks of S. cerevisiae and H.pylori proteins exhibit distinct scale-free

behavior (Jeong et al., 2001; Wagner, 2001). Although protein interaction data is

derived from different sources and is retrieved by different methods, the emergence

of the scale-free property appears to be a robust feature. As previously discussed,

scale-free networks are vulnerable upon targeted attack on their highly connected

nodes. Therefore, mutations of highly interacting proteins are expected to be lethal

for the cell. This prediction is supported by explicit measurements (Jeong, Oltvai &

Barabási, 2003). Fig. 5 represents the Yeast protein interaction network, illustrating

the basic feature that hubs keep many sparsely nodes together.

Protein Domain Networks

The domain architecture of proteins was studied by considering protein domains as

nodes and their co-occurrence in proteins as links (Wuchty, 2001; Apic, Gough &

Teichmann, 2001; Wuchty, 2002), documenting again the emergence of a scale-free

architecture. Although methods and sources of domain information were different, the

scale-free features of the networks were found to be robust. Domains which appear

in cellular functions crucial for the maintenance of multi-cellular organisms, such
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as signal transduction and cell-cell contacts, were found to be the most connected.

Thus, domains like kinases, immunoglobulins and zinc-fingers played an important

role. Interestingly, the increasing complexity of organism’s domain architecture was

found to decrease the slope of the degree distribution and highly connected domains

constantly accumulated links due to the organismic complexity. Similarly, interactions

of domain families generated from sequence and structural data (Park, Lappe &

Teichmann, 2001; Wuchty, 2002) revealed that highly connected domains on sequence

level appear to be the most frequently interacting as well.

Hierarchies in Biological Networks

The clustering coefficient of metabolic networks varies with the inverse degree, C(k) ∼

k−1, indicating the presence of a hierarchical modularity. In order to discern the dis-

crete modules, we can define a topological overlap, which scales from 0 to 1, reflecting

the degree to which two metabolites i and j interact with the same substrates. Sub-

strates that are part of larger metabolic modules appear to have a high topological

overlap with their neighbors. The application of average-linkage clustering to the

obtained overlap matrix has been used to uncover the topological modules present in

the metabolism (Fig. 6). The clustering identified a hierarchy of nested topological

modules of increasing sizes and decreasing interconnectedness. The hierarchical tree

offers a breakdown of the metabolism into several large modules which are further

partitioned into smaller but more integrated submodules, reflecting a certain degree

of inherent self-similarity. Some of these modules have been found to be in excellent

agreement with the known functional classification of metabolites. Other approaches

to discern modules in metabolic networks focused on the appearance of edges in mu-

tual shortest paths in the network (Holme, Huss & Jeong, 2003; Girvan & Newman,

2002). The most frequent edges were identified and removed in an iterative manner,

uncovering again the underlying functional modules.
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Finally, modularity is not an exclusive property of the metabolism. Indeed, the

protein interaction network of S. cerevisae (Yook, Oltvai & Barabási, 2003), based

on four independent databases (Xenarios et al., 2001; Mewes et al., 2000; Uetz et al.,

2000; Ito et al., 2001) and the conformational spaces of RNA (Wuchty, 2003) also

reflect a modular architecture.

Mechanisms of Proteome Evolution

The origin of the scale-free behavior in biological networks continues to offer some

unresolved questions. Recently, however, it has been shown that a simple model

based on gene duplication leads to the experimentally observed scale-free topology

of protein-protein interaction networks (Wagner, 2001; Vazquez et al., 2003; Solé et

al., 2002; Pastor-Satorras, Smith & Solé, 2002). In the model, at each time step a

gene is randomly chosen and duplicated. The copied gene retains all interactions of

the original gene. To mimic the potential loss or gain of interactions due to ran-

dom mutations, interactions of the duplicated genes are deleted or newly added with

probabilities δ and α, respectively (Fig. 7). The emerging network can be shown

analytically to have a power-law degree distribution, high clustering coefficient and a

visual structure similar to the protein-protein interaction network shown in Fig. 5.

CONCLUSIONS

The power-law degree distribution, the quantitative signature of a scale-free network,

has emerged as one of the few universal laws characterizing cellular networks. Of

even greater immediate importance is the intriguing possibility of using the insights

provided by the scale-free models as a framework to facilitate the analysis of biological

networks at a higher level of abstraction. Such approaches could reveal salient features

of biological phenomena missed by non-network based approaches.
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The appearance of hierarchical modularity in biological networks supports the

assumption that evolution acts on many levels. The accumulation of local changes, af-

fecting the small highly integrated modules, slowly impacts the larger, less integrated

modules as well. Thus, evolution might act in self-similar fashion, copying and reusing

existing modules to further increase the organism’s complexity. Especially in the face

of eukaryotic evolution, this network based framework might be suitable to describe

the explosion of complexity in the development of the single-celled S. cerevisiae to-

ward the multicellular H. sapiens.

It is widely accepted that different cellular functions, such as information storage,

processing and execution is carried out by the genome, transcriptome, proteome and

metabolome. Although the functional distinction between these organizational levels

is not always clear cut since e.g. the proteome is crucial for short term information

storage, all cellular functions can be described by networks of various heterogeneous

components. One way to visualize the complex relationships between these compo-

nents is to organize them into a simple complexity pyramid (Oltvai & Barabási, 2002)

in which various molecular components - genes, RNAs, proteins and metabolites - or-

ganize themselves into recurrent patterns such as metabolic pathways and genetic

regulatory motifs. In turn, motifs and pathways are seamlessly integrated to form

functional modules which are responsible for distinct cellular functions (Hartwell et

al., 1999). These modules are nested in a hierarchical fashion and define the cell’s

large-scale organization (Fig. 8).

Our present knowledge about the architecture of biological networks emphasizes

two major aspects: (1) Discrete cellular functions are mediated with the aid of distinct

albeit often blurred modules; (2) Network integrity is assured by a handful highly

connected nodes, making networks robust against random failures but exceedingly

vulnerable upon targeted attack. These features explain the observation that many

mutations have little or no phenotypic effect (Wagner, 2000) which appears to be
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consistent with the presence of genes that either cannot propagate their failure or

whose function can be replaced by other components of the network. The presence of

genes that integrate multiple signals and can trigger widespread changes upon their

failure proves the crucial role of highly connected genes.

For example, the tumor suppressor gene p53 has been identified as such a highly

connected and thus crucial node which, once mutated, severely jeopardizes genome

stability and integration of signals related to the control of cell-cycle and apoptosis

(Vogelstein, Lane & Levine, 2000; Kohn, 1999). Emphasizing its crucial role, disfunc-

tional p53 proteins are involved in more than half of all human cancer phenotypes.

From a biomedical point of view, highly connected proteins in general and proteins

which maintain the integrity of modules can be perceived as disease factors and thus

potential drug targets. With the increasing ability to identify and collect protein-

protein interactions the determination of modules and highly connected proteins will

become a major issue in the fast and effective identification of potential drug targets.

The recent progress in biological networks has successively uncovered the skeleton

and organization of networks, offering important insights about the assembly and

functionality of components and subnetworks. In future, we will need to go several

steps further addressing the dynamic aspects of various cellular networks. Especially,

the analysis of fluxes and fluctuations along the links in metabolic and regulatory

pathways will play a major role, significantly influencing potential biotechnological

applications.
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Fig. 1: Characterising a simple network: in the figure, both nodes, i and j, have

three links (k = 3). The shortest path between these nodes, indicated in blue, has

length lij = 3.

Fig. 2: The clustering coefficient C offers a measure of the degree of intercon-

nectivity in the neighborhood of a node. For example, a node whose neighbors are

all connected to each other has C = 1 (left), whereas a node with no links between

its neighbors has C = 0 (right).

Fig. 3: (a) The random network model is constructed by laying down N nodes

and connecting each pair of nodes with probability p. The figure shows a particular

realization of such a network for N = 10 and p = 0.2. (b) The scale-free model

assumes that the network constantly grows by the addition of new nodes. The figure

shows the network at time t (nodes connected by green links) and after the addition

of a new node at time t+ 1 (red links). With the introduction of new nodes, already

highly connected ones are more favored to be connected to the new one than less

connected nodes. This procedure is called preferential attachment. (c) The iterative

construction of a hierarchical network starts from a fully connected cluster of four

nodes (blue), which is replicated three times. Subsequently, the peripheral nodes of

each replica (green) are connected to the central node of the original module. Repeat-

ing the replication and the connection step with the 16-node module (red) leads to

64-nodes network which provides scale-free topology and is built by nested modules.

(d) The random network is rather homogeneous, i.e. most nodes have approximately

the same number of links. (e) In contrast, a scale-free network is extremely inhomo-

geneous: while the majority of nodes has one or two links, a few nodes have a large

number of links preserving the systems integrity. To show this, five nodes with the

highest number of links are colored red, and their first neighbors are colored green.
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While in the random network only 27% of the nodes are reached by the five most

connected nodes, in the scale-free network more than 60% are, demonstrating the key

role hubs play in the scale-free network. Note, that both networks contain the same

number of nodes and links. (f) A hierarchical network still preserves it’s scale-free

organization and displays inherent modularity of nodes. The node’s affiliation to a

certain module is indicated by different colors. However, the underlying network’s

structure clearly indicates blurred boundaries of it’s modules.

Fig. 4: (a) For the random graph, the degree distribution, P (k), which gives the

probability that a randomly selected node has exactly k edges, follows a Poisson dis-

tribution which is strongly peaked at the average degree 〈k〉 and decays exponentially

for large k. (b), (c) P (k)’s of a scale-free and a hierarchical network do not have

a peak and decay as a power-law, P (k) ∼ k−γ . (d), (e) For both the random and

the scale-free network, the C(k) function, which denotes the mean clustering coeffi-

cient for nodes with exactly k links, is independent of k. (f) In contrast, C(k) of a

hierarchical network depends on k, decaying as C(k) ∼ k−1. Insets correspond to the

number of the underlying networks.

Fig. 5: Map of the protein-protein interaction network of S. cerevisiae (Jeong et

al., 2001). The color code of nodes refers to the phenotypic effect the deletion of the

respective protein has on the organism (red: lethal, green: viable, orange: slowed

growth, yellow:unknown).

Fig. 6: Hierarchies of topological modules in the E.coli metabolism. The branches of

the tree obtained by average-linkage clustering of the topological overlap of metabo-

lites (Ravasz et al., 2002) are color-coded to reflect the predominant biochemical
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classification of their substrates. The biochemical classes represent carbohydrate me-

tabolism (blue); nucleotide and nucleic acids metabolism (red); protein, peptide and

amino acid metabolism (green); lipid metabolism (cyan); aromatic compound metab-

olism (dark pink); monocarbon metabolism (yellow) and coenzym metabolism(light

orange) (Overbeek et al., 2000).

Fig. 7: Mechanism of the gene duplication and divergence model: At each time

step, a gene is randomly duplicated retaining all of it’s links (blue nodes and edges).

Subsequently, interactions of the duplicated gene are deleted or newly added with

probabilities δ and α, respectively (green edge).

Fig. 8: From the particular to the universal: The bottom (level 1) of the pyra-

mid shows schematic representation of of the cell’s functional organization: genome,

transcriptome, proteome and metabolom. Insights into the cell’s organization can

be obtained if we consider the components to be linked by functional relationships,

such as regulatory motifs and metabolic pathways (level 2). In turn, they are the

building blocks of operational modules (level 3) which are nested and considerably

blurred, generating a scale-free hierarchical architecture (level 4). Although the indi-

vidual components are unique, the topological properties of biological networks share

astounding similarities. This suggests that universal organizing principles apply to

all kinds of complex networks (Oltvai & Barabási, 2002).
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Figure 1



S. Wuchty, E. Ravasz and A.-L. Barabaśi: The Architecture of Biological Networks24

Figure 2
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Figure 5
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Figure 8


