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Abstract
The classical approach to protein folding inspired by statistical

mechanics avoids the high dimensional structure of the conformation
space by using effective coordinates. Here we introduce a network
approach to capture the statistical properties of the structure of con-
formation spaces. Conformations are represented as nodes of the net-
work, while links are transitions via elementary rotations around a
chemical bond. Self-avoidance of a polypeptide chain introduces de-
gree correlations in the conformation network, which in turn lead to
energy landscape correlations. Folding can be interpreted as a biased
random walk on the conformation network. We show that the fold-
ing pathways along energy gradients organize themselves into scale
free networks, thus explaining previous observations made via molec-
ular dynamics simulations. We also show that these energy landscape
correlations are essential for recovering the observed connectivity ex-
ponent, which belongs to a different universality class than that of
random energy models. In addition, we predict that the exponent and
therefore the structure of the folding network fundamentally changes
at high temperatures, as verified by our simulations on the AK pep-
tide.
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1 Introduction

Packing problems, atomic clusters [1], polymers, and the ultimate building
blocks of life, proteins, are characterized by high-dimensional conformation
spaces littered with non-accessible regions induced by self-avoidance. Here
we use a network [2, 3] framework to study the conformation space (the col-
lection of all accessible spatial conformations) of chain-like structures such
as polymers and proteins [1, 4, 5]. Conformations are represented as nodes
of the network, while links are transitions via elementary rotations around
a chemical bond. Folding can be interpreted as a biased random walk on
this conformation network. This framework allows us to identify the key
statistical features needed to recover generic properties of folding dynamics.
In particular, it has been observed via Molecular Dynamics (MD) simula-
tions on a number of peptides [5] that folding networks are scale-free with
an exponent of −2. First we observe that folding networks are a special case
of gradient graphs [6, 7], which are induced by local gradients of a scalar
field (conformational energy) associated with the nodes of a substrate graph
(conformation network). We find that the scale-free property is a generic
feature of gradient networks and thus in particular of protein folding net-
works. Second, we identify the statistical properties of the substrate graph
and scalar (energy) field responsible for the −2 exponent and show that it
is a consequence of correlations in the energy landscape. We anticipate that
the methodology presented here and the some of the conclusions (such as
the scale-free character of energy landscape networks) can be carried over
to other conformation spaces as well, including atomic clusters [1] and other
packing problems.

The spatial conformation of proteins can be described by the sequence
of the backbone dihedral angles (Φ,Ψ) between consecutive peptide bond
planes [8]. Although these angles are continuous variables, they are known
to take on a few preferred values (typically 3 for each angle) corresponding
to local minima of the torsional potential energy [8, 9]. This allows for a nat-
ural representation of conformations as nodes of a network [5] (conformation
network), with edges representing rotations from one preferred dihedral an-
gle to another around a single chemical bond (elementary rotations). For an
n-monomer protein the conformation network has on the order of 10n nodes
(distinct states), which attains astronomically large values even for short
peptides. The immense size of conformation spaces was first pointed out by
Levinthal [9] (known as the paradox of protein folding): searching at random
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for a particular state (such as the native state) would take the peptide longer
than the age of the universe [10]. Historically, this size issue has been avoided
by projecting the conformation space onto one or two variables such as reac-
tion coordinates or order parameters (e.g., the root mean square deviation of
the atoms from their positions in the native state). Unfortunately, this leads
to loss of information about the structure of conformation spaces, which are
naturally high dimensional. Additionally, the choice of reaction coordinates
often requires the knowledge of the native state. The network representation
preserves the structure and dimensionality of conformation spaces, and at
the same time creates a framework for a statistical description of their struc-
tural properties. Since statistical properties frequently obey scaling laws,
working with smaller but statistically similar networks avoids the size issue.
The approach presented here is based on this premise: Generic features of
folding dynamics are determined by statistical properties of the conformation
network.

2 Results and Discussion

2.1 Conformation networks

In spite of the wide diversity among proteins (as distinguished by their amino-
acid sequence), we argue that their conformation networks share important
statistical features. Namely, their degree distributions are scaled — sharply
peaked around their average (characteristic to homogeneous networks [11]),
and they have the small-world property [12]. These features are actually
generic to chain-like systems, as illustrated by a simple ball-chain model
(BC) of n+ 1 balls connected by thin rods (Figure 1A and 1C). If there are
m relative angular positions between two consecutive rods (bonds), every
conformation of the ball-chain can be represented as a sequence of integers
(i1, i2, . . . , in), i, j ∈ {0, . . . ,m − 1}. Assuming these m positions can only
be accessed sequentially (blue links in Figure 1A) the chain conformations
naturally form an n-dimensional hypercube with m states along each axis
(Figure 1B). Certainly, this is a homogeneous network [11] with a binomial
degree distribution (see Figure 1F and Supporting Information). In spite
of its lattice structure, this network is also small-world: the network size
N (node number) is exponential in the number of monomers (N = mn),
while its diameter is given by the largest Manhattan distance, (m− 1) ·n, or

3



(m − 1) logmN : hence the logarithmic scaling characteristic to small-world
networks [12].

Figure 1: Certain statistical properties of conformation networks can
be inferred from simplified models. Ball-Chain (BC) models in 2D and
3D (9). (A) 2d-BC model with n = 2 monomers and m = 3 allowed states
between consecutive bonds. Blue lines represent allowed transitions links
of the conformation network. (B) 2d-BC conformation network redrawn as
a lattice. (C) A simple 3d-BC model (see Supporting Information). (D)
Conformation 00100, shown as a green node on E. (E) Conformation net-
work of the 3d-BC model with L = 7 rods, q = 75 and r = 0.25. Sterically
allowed conformations and transitions are shown with blue nodes and gray
lines. Regions forbidden by hard-core exclusion are shown in red. (F) De-
gree distribution of the 100 dimensional conformation lattice with open (blue
circles) and periodic (if state 0 and state m-1 are connected, red line) bound-
ary conditions. (G) Degree distribution of the 3d-BC model (blue circles,
L = 50, q = 75, r = 0.25, 20.000 sample points). The red line shows the
degree distribution if sterical constraints are ignored.

Introducing the self-avoidance of protein chains into the BC model dis-
rupts the perfect regularity of the conformation network: certain confor-
mations (nodes) and transitions (links) are forbidden, i.e., pruned from the
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hypercube. This network resembles an n-dimensional swiss-cheese with holes
representing the forbidden regions (Figure 1E). As a consequence, the degree
distribution shifts towards lower degrees and broadens, however, it preserves
its scaled character as shown in Figure 1G. The study by Scala et al of self-
avoiding lattice polymers fixed at both ends [4] recovers the same generic
conformation network properties: binomial degree distribution and small-
world nature.

2.2 Folding Pathway Networks

Recently, Rao and Caflisch [5] have used Molecular Dynamics (MD) simu-
lations to sample the conformation network of several 20-monomer peptides
including beta3s (a designer peptide), its randomized heteropolymers, and
homoglycine. Their result, however, presents a very different picture: the
conformation networks of these peptides are all scale-free [13], with almost
identical power-law tails for their degree distributions: P (k) ∼ k−2. We con-
firmed their results with MD simulations on the AK peptide [14, 15]. This
suggests that the scale-free nature along with the −2 exponent is a universal
property of protein conformation networks. Naturally two questions arise:
1) Why do simple ball-chain and lattice polymer models suggest a scaled
network, while MD simulations of actual peptide chains indicate a scale-free
structure? 2) What is behind the apparently universal character of the ex-
ponent γ = −2 ?

To resolve the dilemma of question 1) we observe that conformation net-
works of chain models do not take into account the potential energy asso-
ciated with different conformations (generated by the interactions between
residues and between the chain and solvent). On the other hand, MD meth-
ods simulate conformational dynamics driven by energy differences between
conformations. Since the conformation network enlists all sterically allowed
states and transitions, the MD simulations will trace a path along the edges
of this network. At T = 0 the path follows the local energy gradient, while at
larger temperatures deviates from it according to Boltzmann statistics [16].
Hence, networks produced by MD simulations are temperature-dependent
sub-graphs of the full conformation networks.
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2.3 Gradient Networks

One can characterize these MD graphs using the notion of the gradient net-
work [6, 7]: the collection of directed links that lead from every confor-
mation (node) to their lowest energy neighbour. These directed links are
organized into trees, dividing the conformation network into basins of local
minima (Figure 2). At T = 0 the MD simulation paths follow the gradient
links exclusively, while at higher temperatures they occasionally deviate from
them, producing a ”fattened” version of the gradient network. At very high
temperatures the MD simulation performs an unbiased random walk on the
conformation network.

Figure 2: The gradient network. Gradient networks are directed sub-
graphs of a graph G (the support network) generated by scalar fields asso-
ciated with nodes on G. The links of the gradient network point from each
node to the neighbour with the smallest scalar value (colored links). These
links organize themselves into trees, which span the basins of local minima
(the four basins shown with different colors; local minima are marked by
self-loops).

Gradient networks generated by random fields (a random scalar associ-
ated to each node) have been found to be scale-free [6, 7] even if the sup-
porting graph is scaled or homogeneous (e.g., Erdős Rényi graphs). The
scale-free property can be analytically proven in the case of identical, inde-
pendently distributed (i.i.d.) random scalars on scaled support graphs that
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do not contain loops of length 3 and 4 [7]. The gradient networks’ scale-
free nature, however, seems to be universal: we observed it for all types of
substrate networks we investigated: regular tree, random tree, Erdős-Rényi
network, Small-World network, high dimensional regular lattice, n-torus lat-
tice, the random geometric graph (Figs. S1, S2 in Supporting Information)
and scale-free network (Barabási-Albert, configuration model, etc. [6, 7]).
Since the MD simulations closely trace the gradient network, these observa-
tions explain the observed scale-free nature of the MD network, answering
question 1).

2.4 Energy landscape correlations

On scaled support graphs (such as conformation networks of heteropolymers)
with i.i.d. random scalars (energies) distributed on them, the observed gra-
dient degree exponent is always γ = −1 (see Supporting Information, Figure
S1 and S2) [7], and not −2 as observed in MD simulations. Since the case of
independently distributed random energies corresponds to the well-studied
Random Energy Model of protein folding [17], the discrepancy between the
exponents shows the inadequacy of random energy models to characterize
realistic folding landscapes [18]. In order to deviate from the Random En-
ergy Model, one needs to uncover the correlations in the energy landscape
responsible for the −2 exponent.

First we observe that for proteins with effectively attractive interactions
along the chain (a result of the interactions among the residues and the
hydrophobic — hydrophilic interactions with the surrounding solvent), the
potential energy of tightly packed conformations (such as a native state)
is lower on average, while for open and extended chain conformations it is
larger (Figure 3A). For compact conformations, however, many elementary
rotations are sterically forbidden and thus these represent nodes with low
degree in the conformation network, while high degree nodes correspond to
open chain conformations where virtually all of the elementary rotations are
allowed. These observations show that on average the energy of a confor-
mation (〈E〉) is a monotonically increasing function of its degree (k) in the
conformation network. For example, endowing the 3d-BC model with an
attractive interaction between the balls given by a −1/r2 potential leads to
a monotonic behaviour of the 〈E〉(k) function (Figure 3C).

However, the above energy-network correlation alone is not sufficient to
produce the −2 scaling (as illustrated in the Supporting Information, Figure
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Figure 3: Correlations in the structure of conformation networks.
(A) Correlations between degree and energy: tightly packed conformations
have, on average, low degree as well as lower energy than loose ones. (B)
Degree correlations or assortativity: tightly packed conformations with low
degrees typically have neighbors with similar degrees. (C) Monotonically
increasing 〈E〉(k) function, as measured for the 3d-BC model with an at-
tractive potential (−1/r2) between the balls (L = 50, q = 75, r = 0.25,
20,000 sample points). (D) Degree correlations in the 3d-BC model (L = 30,
q = 75, r = 0.25, 20,000 sample points). Colors are proportional to the
square of K(k1, k2) (see Methods Section). (E) Degree correlations in the
RGG (N = 30, 000, 〈k〉 = 1000). (F) Gradient network in-degree distri-
bution for RGG (N = 30, 000, 〈k〉 = 1000, averaged over 200 realizations
for strong, 500 for weak 〈E〉(k) bias). Scalar values were drawn at random
from a sliding interval, the center of which increased with node degree. (G)
Gradient network in-degree distribution for the 3d-BC model with −1/r2

potential between balls (L = 70, q = 75, r = 0.25 with 10,000 sample points
and L = 50, q = 60, r = 0.25 with 20,000 sample points).
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S3). One needs to include a second statistical ingredient, which is indeed
characteristic to heteropolymer conformation networks as well, namely, de-
gree assortativity [19]. This means that connections between nodes with
similar degree are highly probable, whereas connections between nodes with
very different degrees are less likely. For conformation networks this holds
naturally (see Figure 3D for the 3d-BC model), since one elementary rota-
tion does not significantly unpack a compact (low degree) conformation or
collapse an open (high degree) one (Figure 3B).

We expect that all scaled networks and associated scalar fields that share
the two statistical properties above generate scale-free gradient networks with
a −2 in-degree exponent. As an illustration we considered random geometric
graphs (RGG) as substrate networks, obtained by connecting all pairs of
randomly sprinkled N points in the unit square that are within a prescribed
distance R (20). Similarly to the Erdős-Rényi graphs [11], these networks
have a binomial degree distribution (thus scaled), however, unlike Erdős-
Rényi graphs they show degree assortativity [19] (Figure 3E). Associating
energy values that increase on average with node degree, one recovers the
γ = −2 exponent for its gradient network (Figure 3F). For the 3d-BC model
with −1/r2 interactions the measured in-degree distribution of the generated
gradient network is also consistent with the γ = −2 exponent (Figure 3G,
see Supporting Information for sampling issues). It is important to note that
the γ = −2 exponent is a consequence of the monotonic character of the
〈E〉(k) dependence, not on its specific form. The reason for this lies with the
fact that gradient networks are only determined by the relative differences
between the energies at the two ends of a link and not by their absolute
values.

2.5 Temperature dependence of the folding network

Since the MD simulations trace a random walk on the conformation network
biased by potential energy differences, we expect that this bias becomes grad-
ually insignificant at larger temperatures and thus the deviations of the fold-
ing pathway network from the gradient network become more pronounced.
As a consequence, the degree distribution of the MD pathway network should
shift from a power-law scaling to a scaled form approaching the degree dis-
tribution of the full underlying conformation network (exponential tail). We
performed a series of MD simulations at increasing temperatures for the 20-
monomer AK peptide [14, 15] (Figure 4A, also see Methods Section). As
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seen from Figure 4B, the degree distribution of the MD network shows a
power-law decay with γ = −2 for lower temperatures, while at increasingly
higher temperatures it transforms into a distribution with a fast decaying
tail characteristic to homogeneous networks.

Figure 4: MD simulations of the AK peptide. (A) Helical conforma-
tion of the 20-monomer AK peptide (ALA: orange, LYS: blue, TYR: green).
(B) Temperature dependence of the folding network. At low temperatures
(T = 400) MD traces a network with a power-law degree distribution with
exponent −2. However, increasing the temperature destroys this power-law:
the network obtained at T = 1200 has a degree distribution with an exponen-
tial tail. (C) Three different samples of the AK folding network at T = 400
(red, yellow and green), starting from the same conformation (helix shown
in A).

Figure 4C shows the networks sampled by three short MD runs at T = 400
(starting from the same perfectly helical state but different random seeds)
illustrating their degree heterogeneity and the basins of local minima that
collect similar conformations. The helix partially melts in three different
ways (red, green, yellow networks) due to changes in initial conditions. The
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three sampled conformation networks have, nonetheless, robust statistical
properties, such as their degree distribution (red squares on Figure 4B).

3 Conclusions

Here we have uncovered the microscopic origin of scale-free character and
connectivity exponent for protein folding networks mapped from MD sim-
ulations of short peptides. Our approach provides a handle on the multi-
dimensionality of the folding conformational energy landscape that is lost
upon projecting onto low dimensions such as reaction coordinates. Further
connection of this network with sequence information may prove valuable for
identifying artificial sequences that are foldable, designing proteins with given
requirements, and study conditions that may lead to miss-folding and aggre-
gation. Furthermore, understanding the topology of the folding networks
mapped by MD simulations will aid the development of faster computational
algorithms to study the folding of large proteins.

4 Methods

4.1 Measurement of degree correlations

Degree correlations in a network can be measured by comparing the number
of links connecting a pair of nodes n(k1, k2) to it’s value in an uncorrelated
network, n0(k1, k2):

K(k1, k2) =
n(k1, k2)

n0(k1, k2)
− 1 =

n(k1, k2)N

(k1 + k2)n(k1)n(k2)
− 1, (1)

We used equation [1] to measure degree-degree correlations in the random
geometric network (figure 3E). For figure 3D, the 3d-BC model, we needed
to measure degree correlations without constructing the entire network. We
performed a random sampling of its topology by choosing a random node and
mapping it’s first and second neighborhood. In this case the available data is
in the form of degree pairs kout and kin, where a distinction should be made
between the randomly sampled nodes (with degree kout) and their neighbors
(with degrees kin, which are not randomly sampled). Thus we used:

K(kout, kout) =
n(kout, kout)L

kout n(kout)n(kin)
− 1, (2)
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where L is the number of sampled links (see Supporting Information).

4.2 Molecular Dynamics Simulations of the AK pep-
tide

The model helical system considered in this study is a 20-residue alanine-
based peptide with 3 lysines (K), the AK peptide. The sequence is A-A-
A-A-K-A-A-A-A-K-A-A-A-A-K-A-A-A-A-Y. The AK peptide was blocked
with acetyl and amino groups at the N- and C- terminus, respectively. For
this study, we have considered the AK peptide coupled to an effective heat-
bath instead of an explicit solvent. The modified version of PARM94 force
field of AMBER [21, 22] was used with an all atom representation for the
AK peptide. All bonds involving hydrogen atoms were constrained using
SHAKE [23]. The initial conformation corresponded to the fully helical AK
peptide. Initial velocities were assigned randomly to each atom from the
Maxwell distribution for a given temperature.

Conformational preferences of the AK peptide are influenced by the local
environmental conditions and certainly by the surrounding solvent. We have
neglected the effect of solvent at this stage. We do not expect that the intro-
duction of the solvent would influence the scale-free character of the folding
pathways or their connectivity exponent γ, as long as the necessary correla-
tions (as explained in the main text) are there. Indeed the MD simulations
by Rao and Caflisch, which included the solvent, recover the same properties
(scale-free and γ = −2) as our simulations on the AK peptide without a
solvent.

The output of the MD simulation is a list of conformation coordinates as
a function of time. These coordinates allow us to measure the dihedral angles
along the peptide backbone at every time-step and test for the observation by
Ramachandran [8], according to which the angular values in the Φ–Ψ plane
are characterized by well-defined peaks. Since our simulations do not include
solvents, it is important to check whether the Ramachandran observation of
preferred angular values still holds in this case. For the AK peptide this would
allow a good discretization of the Φ–Ψ plane. (For a standard discretization
of amino-acid states of known proteins in their native state see the Protein
Data Base [24]. Their local secondary structure assignment is based on [25]).
We performed 9 different temperature simulations of 0.2 nanoseconds each
at temperatures ranging from 200K to 1,000K. Conformations were sampled
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every 2 femtoseconds, the same as the MD time-step. Frequently visited
values of Φ–Ψ organize in well-defined basins that correspond to the differ-
ent local secondary structures the amino-acids are part of (see Supporting
Information, figure S5). We divided the Φ–Ψ plane in 7 domains, numbered
them and discretized all Φ–Ψ angles accordingly (our Φ–Ψ domains, super-
imposed on contourplot representation of the angle distributions at different
temperatures are shown in figure S6.

The 9 simulations described above were also used to determine practical
sampling rates at different temperatures. While at T = 1, 000 the system
changes conformation in almost all 2 fs steps (21, 157 different conformations
were seen during one 100, 000 step run), at T = 200 only 15 different confor-
mations were sampled in the same time. Thus we choose our sampling rate
for every temperature such that the probability of two consecutive conforma-
tions being the same is ' 0.45 (the sampling rate only affects how often we
record conformations, the time-step of the simulation itself is still dt = 2 fs,
making low temperature runs longer).

Figure 4B was generated from simulations starting with an α-helix state
at 10 different temperatures (T ∈ {400, 450, 500, 600, 700, 800, 900, 1000, 1100,
1200}). The runs were ended when 100, 000 sampled steps have been com-
pleted, with sampling steps of Dt ∈ {152, 102, 70, 36, 22, 14, 8, 6, 4, 2} fs, re-
spectively. Figure 4C was drawn using three T = 400 runs of only 10, 000
sample steps each (Dt = 152 fs). They are all shorter than the time-scale
on which the system would equilibrate and eventually reach a ”native state”
(assuming that it exists in the absence of a solvent).
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