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Spatial stochastic resonance in one-dimensional Ising systems
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The one-dimensional Ising model is analytically studied in a spatially periodic and oscillatory external
magnetic field using the transfer-matrix method. For low enough magnetic field intensities the correlation
between the external magnetic field and the response in magnetization presents a maximum for a given
temperature. The phenomenon can be interpreted as a resonance phenomenon induced by the stochastic heat
bath. This ‘‘spatial stochastic resonance’’ is realized in the equilibrium state and not as a dynamical response
to the external time-periodic driving.@S1063-651X~99!50210-9#

PACS number~s!: 05.40.2a, 05.20.2y, 05.50.1q
ld
sy
ce
a
o

ne
ri
r

ic

he

ti
l-

r

n

ains
he
eri-
rly

f
de

ier

non
ical

we

.

I. INTRODUCTION

Many recent papers@1–9# revealed unequivocally the
phenomenon of stochastic resonance~SR! @10# in the kinetic
Ising model driven by a temporary oscillating magnetic fie
SR was anticipated by considering the Ising model as a
tem of coupled two-state oscillators in the stochastic for
field of thermal fluctuations. In this sense the system has
the ingredients necessary to observe the classical phen
enon of stochastic resonance.

In the present paper we intend to study the o
dimensional ferromagnetic Ising model in a spatially pe
odic and oscillatoryB( i ) magnetic field. We conside
^B( i )& i50 ~the brackets denote a special averaging! and
B( i 1l)5B( i ). 2l is the spatial period of the magnet
field, i the lattice points, i 51,2,3, . . . ,2pl, and p
51,2, . . . aninteger.

The Hamiltonian of the system is written as

H52J(
i 51

2pl

S~ i !S~ i 11!2m(
i 51

2pl

B~ i !S~ i !, ~1!

with m the magnetic moment of theS( i )561 Ising spins.
We impose periodic boundary conditions, thusS(2pl11)
5S(1). Themagnetic field is taken stationary in time.

Due to the oscillatory nature of the magnetic field at t
T50 thermodynamic temperature~and not to high magnetic
field intensities! the s5^B( i )S( i )& correlation is greatly re-
duced.~The brackets in the correlation denotes both a spa
and ensemble average.! This is simply understandable rea
izing that the infinite correlation length@j(0)5`# competes
with the finite 2l period ofB( i ). At T5` the leading sto-
chastic contribution givess50. We expect that for a given
finite temperature thej correlation length will be of the orde
of thel period ofB( i ) and thus thes correlation will reach
a maximal value. This spatial resonancelike phenomeno
induced by the stochastic force field~temperature! for the
PRE 601063-651X/99/60~4!/3463~4!/$15.00
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energetically frustrated system atT50. Spatial SR type ef-
fects have been already reported in one-dimensional ch
of coupled SR elements driven by time-periodic signals. T
noise enhanced spatiotemporal synchronization was num
cally demonstrated and discussed for a chain of linea
coupled bistable elements@11#. Experimental evidence o
such behavior was obtained in an array of coupled dio
resonators@12#. The main difference between these earl
studies and the present one is that our Hamiltonian~1! is now
time independent. The expected resonancelike phenome
is realized in the equilibrium state and not as a dynam
response to external time-periodic driving.

II. METHOD

To give an exact solution for the proposed problem
choose the most simplest possibleB( i ) configuration with
the above imposed properties. We chooseB( i )5B for i
52nl11 (n50,1,2 . . .p21), B( i )52B for i 5(2n
11)l11, andB( i )50 for all other lattice points. We are
interested in thê S(1)& average magnetization at thei 51
position from where thes correlation is easily determined
From the chosen magnetization profile we get

s5^B~ i !S~ i !&5pB~^S~1!&2^S~l11!&!. ~2!

From symmetry argumentŝS(1)&52^S(l11)&, and we
can write

sp52pB^S~1!&. ~3!

In order to determinêS(1)& we calculate~i! the Z2pl

partition function of the system,~ii ! the Z2pl
1 partition func-

tion for S(1)51 imposed condition, and~iii ! and theZ2pl
2

partition function for theS(1)521 imposed condition. We
get the desired̂S(1)& value, as

^S~1!&5
Z2pl

1 2Z2pl
2

Z2pl
. ~4!
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During our calculations we use several matrices wh
explicit forms are given in the Appendix.

III. L 52l LENGTH CHAIN „p51…

With the notationsj 5J/kT and h5mB/kT (T is the
temperature of the system, andk is the Boltzmann constant!
the partition functionZ2l is written as

Z2l5(
S(1)

(
S(2)

. . . (
S(2l)

expH j F(
i 51

2l

S~ i !S~ i 11!G1hS~1!

2hS~l11!J ~5!

~the sums are forS( i )561).
We use the transfer-matrix method to calculateZ2l ,

Z2l5(
S(1)

(
S(2)

. . . (
S(2l)

^S~1!uI 1uS~2!&

3^S~2!uI 0uS~3!&•••^S~l!uI 0uS~l11!&

3^S~l11!uI 2uS~l12!&

3^S~l12!uI 0uS~l13!&•••^S~2l21uI 0uS~2l!&

3^S~2l!uI 0uS~1!&

with the I 0 and I 6 matrices given in the Appendix@see Eq.
~A1!#. It is now immediately apparent that

Z2l5Tr~ I 1I 0
l21I 2I 0

l21! ~6!

@where Tr(A) denotes the trace of theA matrix#. Introducing
the M @see Eq.~A2!# diagonal matrix we get

I 15MI 0 , ~7!

I 25M 21I 0 , ~8!

Z2l5Tr~W!, ~9!

W5MI 0
lM 21I 0

l . ~10!

Choosing a representation whereI 0 becomes diagonal we ge

I 085UI 0U21, ~11!

M 85UMU21, ~12!

W85M 8I 08
lM 821I 08

l, ~13!

Z2l5Tr~W8! ~14!

~theU, I 08 , andM 8 matrices are also given in the Appendix!.
After some elementary algebra one will find

Z2l522l$cosh2~h!@cosh2l~ j !1sinh2l~ j !#

22 sinh2~h!sinhl~ j !coshl~ j !#%. ~15!

For Z2l
1 andZ2l

2

e
Z2l

6 5(
S(2)

(
S(3)

. . . (
S(2l)

expH j F(
i 51

2l

S~ i !S~ i 11!G
1hS~1!2hS~l11!J ~16!

@for the 6 cases we haveS(1)561, respectively# we per-
form a similar calculation,

Z2l
6 5(

S(2)
(
S(3)

. . . (
S(2l)

^S~2l!uS6uS~2!&

3^S~2!uI 0uS~3!&•••^S~l!uI 0uS~l11!&

3^S~l11!uI 2uS~l12!&

3^S~l13!uI 0uS~l14!&•••^S~2l21!uI 0uS~2l!&,
~17!

Z2l
6 5Tr~S6I 0

l21I 2I 0
l22!.

The S6 matrices are also given in the Appendix@see Eq.
~A5!#. Using Eq.~8! we can write

Z2l
6 5Tr~P6I 0

lM 21I 0
l!, ~18!

P65I 0
21S6I 0

21 . ~19!

Again, we calculate the trace in the representation whereI 0
is diagonal and we get

Z2l
6 522l21e6h$cosh~h!@cosh2l~ j !1sinh2l~ j !#

72 sinh~h!sinhl~ j !coshl~ j !%. ~20!

With the obtainedZ2l and Z2l
6 values^S(1)& is easily de-

termined@see Eq.~4!# and for thesp @see Eq.~3!# correlation
we get finally,

s152B
tanh~2h!

11
1

cosh~2h! S 11tanhl~ j !

12tanhl~ j !
D 2 . ~21!

IV. L 52pl „p>1… LENGTH CHAIN

In order to be able to make the calculations easily in
p.1 case we first writeZ2l

6 in a more convenient form,

Z2l
6 5Tr~P68 I 08

lM 821I 08
l!5Tr~R68 W8!, ~22!

R68 5P68 M 821. ~23!

Is easy to realize that

Z2l5Z2l
1 1Z2l

2 5Tr~W8!, ~24!

Z2l
1 2Z2l

2 5Tr~R8W8!. ~25!

For thep.1 case it is immediate that

Z2pl5Tr~W8p!. ~26!

Writing up the effective forms ofZ2pl
6 like in thep51 case,

one can also show that
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Z2pl
6 5Tr~R68 W8p!. ~27!

In the representation whereW8 is diagonal it is easy now to
calculate ^S(1)& and sp . Denoting by x1 and x2 (x1
>x2) the eigenvalues ofW8, after some simple algebra w
find

sp52pB
Tr~R8W8p!

Tr~W8p!
5s1

Tr~W8!

AD

x1
p2x2

p

x1
p1x2

p
, ~28!

D5Tr~W8!224 det~W8!, ~29!

x1,25
Tr~W8!6AD

2
. ~30!

In the limit p→` we get the simple formula

s`5s1

Tr~W8!

A~D
, ~31!

which is easily computable from theW8 matrix given in the
Appendix @see Eq.~A6!#.

V. DISCUSSION

Equations~21! and~31! give us thes5^B( i )S( i )& corre-
lations for thep51 and p5` periodic chains. Thes(T)
correlation is proportional to thêS(1)&(T) curves@see Eq.
~3!#. In Fig. 1 we plotted̂ S(1)&(T) for three different ap-
plied magnetic field intensities.

As expected, formB/J,2 ~when the interaction with the
external field is weaker than the interaction with the neig
boring spins! a clear resonancelike behavior is obtaine
Both for p51 andp5`, ^S(1)&(T) exhibits a clear maxi-
mum at aTrÞ0 resonance temperature. It is also observa
that the^S(1)&(T) curves forp51 andp5` are very close,
thus thep51 result is qualitatively well describing thep

FIG. 1. Characteristic shape of^S(1)&(T) for three different
magnetic field intensities (mB/k50.1,1.0,2.1). The continuou
lines are forp51, the dashed ones forp5`, l520 ~lattice spac-
ing! for all curves.
-
.

le

.1 cases as well. TheTr resonance temperature depen
both on theB intensity of the applied magnetic field and th
characteristicl distance of the spatial oscillations ofB( i ). In
Fig. 2 we illustrate theTr(B) dependence, and in Fig. 3 th
Tr(l) trend. From Fig. 2 we learn that in theB→0 limit the
Tr values are converging to a constant~which is dependent
on p), and in themB/J>2 limit Tr50, thus no resonance
behavior is obtained. TheTr(l) variations~Fig. 3! are also
the ones expected from our phenomenological consid
ations. In the limitl→` we getTr→0, andTr is monotoni-
cally decreasing with increasingl values. It is interesting to
note that for the minimal possiblel value (l51) the reso-
nancelike behavior is still present but thep51 and p5`
curves are much more distant compared to the largel values
case.

FIG. 2. Tr resonance temperature as a function of the app
magnetic field intensity. We draw the results for two differentl
values (l in units of lattice spacing!. The continuous lines are fo
p51, the dashed ones forp5`.

FIG. 3. Tr resonance temperature as a function of thel length
~in units of lattice spacing!. We draw the results for two differen
applied magnetic field intensities. The continuous lines are fop
51, the dashed ones forp5`.
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R3466 PRE 60NÉDA, RUSZ, RAVASZ, LAKDAWALA, AND GADE
VI. CONCLUSIONS

In the present paper we studied the response of a
dimensional Ising chain to spatially periodic and oscillato
magnetic fields. Considering the most simple magnetic fi
profile we exactly solved the problem by using the transf
matrix method. We found that thes5^B( i )S( i )& correlation
between the applied magnetic field and the local magnet
tion exhibits a maximum for a givenTr resonance tempera
ture ~Fig. 1!. The Tr resonance temperature depends mo
tonically on thel spatial oscillation length of the magnet
field ~Fig. 3!. The value ofTr depends also on theB intensity
of the magnetic field, and becomes independent ofB in the
smallB values limit~Fig. 2!. For largel values, the length of
the chain (L5p32l) has no major influence on the ob
served resonancelike behavior. The obtained spatial type
is induced by the stochastic heat bath. It is realized in
equilibrium state and not as a dynamical response to exte
time-periodic driving.

APPENDIX

I 05F ej e2 j

e2 j ej G , I 65F ej 6h e2 j 6h

e2 j 7h ej 7h G , ~A1!

M5Feh 0

0 e2hG , U5
1

A2
F1 1

1 21G , ~A2!
y,
e-

ld
-

a-

-

R
e
al

M 85Fcosh~h! sinh~h!

sinh~h! cosh~h!
G , ~A3!

M 8215F cosh~h! 2sinh~h!

2sinh~h! cosh~h!
G , ~A4!

I 0852Fcosh~ j ! 0

0 sinh~ j !
G , S65e6hFe62 j 1

1 e72 j G ,
~A5!

W8522lFw118 w128

w218 w228
G , ~A6!

w118 5cosh2~h!cosh2l~ j !2sinh2~h!coshl~ j !sinhl~ j !

w128 5sinh~h!cosh~h!sinhl~ j !@sinhl~ j !2coshl~ j !

w218 5sinh~h!cosh~h!coshl~ j !@coshl~ j !2sinhl~ j !#

w228 5cosh2~h!sinh2l~ j !2sinh2~h!coshl~ j !sinhl~ j !

P68 5
e6h

2 F 1 61

61 1 G , ~A7!

R85F0 1

1 0G , R68 5
1

2 F 1 61

61 1 G . ~A8!
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