Erzsébet Ravasz Regan

 Regulatory Networks 
 Configuration networks 
 Hierarchy in networks 
 Metabolic networks 
 CVBR Course 
 CVBR Journal Club - Noise  
 Teaching Experience 
 Teaching Statement 
 Curriculum Vitae 
The complexity of cellular networks

1. Meet complex networks


  • Introduction to complex networks
  • Very brief history of the field
  • A coctail of examples
  • General structural characteristics from diversity
    • Degree distribution
    • Paths along links, small worlds
    • Betweennes centrality
    • Clustering coefficient, network motifs
    • Degree correlations
    • Modular organization, hierarchy
    • Self-similarity, fractal nature of networks
    • Overlapping communities

CVBR course syllabus (pdf)
 Lecture 1 (pdf) 




If you happen to find an incorrect or non-functional link, please send me a quick email! Thank you for your understanding.

  • Books, reviews for Introduction (for an extensive list see Books, Reviews section in 6):
    1. A.-L. Barabási, Linked: The New Science of Networks, Perseus Publishing, Cambridge, MA, (2002);
    2. M. Newman, A.-L. Barabási, D. J. Watts (eds.), The Structure, Dynamics of Networks: (Princeton Studies in Complexity), Princeton University Press; 1 edition, Princeton, (2003);
    3. R. Albert, A.-L. Barabási, Statistical mechanics of complex networks, Rev. Mod. Phys, 74(1):47-97, 026112 (2002);
    4. M. E. J. Newman, The structure, function of complex networks, SIAM Rev, 45(2):167-256 (2003);
    5. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez,, D. U. Hwang, Complex networks: Structure, dynamics, Phys. Rep, 424(4-5):175-308 (2006);
    6. E. Ravasz Regan, Networks: Structure, Dynamics, In: Meyers RA, editor in chief, Encyclopedia of Complexity, System Science. Springer (2009);
    7. For references on specific network datasets see reviews 5, 6
  • Very brief history of the field:
    1. L. Euler, Solutio problematis ad geometriam situs pertinentis. Commentarii academiae scientiarum Petropolitanae, Commentarii academiae scientiarum Petropolitanae, 8:128-140 (1741);
    2. S. Milgram, The small-world problem, Psychology Today, 2:60-67 (1967);
    3. P. Erdos, A. Renyi, On random graphs I, Publ. Math. (Debrecen), 6:290-297 (1959);
    4. P. Erdos, A. Renyi, On the evolution of random graphs, Publ. Math. Inst. Hung. Acad. Sci., 1:261-267 (1961);
    5. P. Erdos, A. Renyi, On the evolution of random graphs, Publ. Math. Inst. Hung. Acad. Sci., 1:261-267 (1961);
    6. P. Erdos, A. Renyi, On the strength of connectedness of a random graph, Acta Math. Acad. Sci. Hungar., 1:261-267 (1961);
    7. D. J. Watts, S. H. Strogatz, Collective dynamics of small-world networks, Nature, 393:440-442 (1998);
    8. A.-L. Barabási, R. Albert, Emergence of scaling in random networks, Science, 286:509-512 (1999);
  • A coctail of examples:
    1. The Internet
    2. Business ties in US biotech-industry
    3. E. Coli Metabolic network: E. Ravasz, Evolution, hierarchy and modular organization in complex networks (Ph. D. Thesis), Notre Dame (IN): University of Notre Dame, (2004);
    4. Protein Interaction Network in Yeast: H. Jeong, S. P. Mason, A.-L. Barabási, Z. N. Oltvai, Lethality and centrality in protein networks, Nature, 411:41-42 (2001);
    5. Survival Signaling in Leukemia: R. Zhang, M. V. Shah, J. Yang, S. B. Nyland, X. Liu, J. K. Yun, R. Albert, T. P. Loughran, Network model of survival signaling in large granular lymphocyte leukemia, Proceedings of the National Academy of Sciences, 105(42):16308-16313 (2008);
    6. Human Disease Network: K.-I. Goh, M. E. Cusick, D. Valle, B. Childs, M. Vidal, A.-L. Barabási, The human disease network, Proceedings of the National Academy of Sciences, 104(21):8685 (2007);
    7. Protein Folding Pathways: F. Rao and A. Caflisch, The protein folding network, J. Molec. Biol, 342299 (2002);
    8. Food Webs: Yoon, I., R.J. Williams, E. Levine, S. Yoon, J.A. Dunne, and N.D. Martinez, Webs on the Web (WoW): 3D visualization of ecological networks on the WWW for collaborative research and education, Proceedings of the IS&T/SPIE Symposium on Electronic Imaging, Visualization and Data Analysis, 5295:124-132 (2004);
    9. Metabolic Networks: H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, A.-L. Barabási, The large-scale organization of metabolic networksThe large-scale organization of metabolic networks, Nature, 407:651-655 (2000);
  • General structural characteristics from diversity (citations coming soon!):