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Abstract

by

Erzsébet Ravasz

Large systems in nature and civilization share some important organizing prin-

ciples uncovered in the framework of complex network research. Here we aim to

present a few advances in understanding the generic topological characteristics of

these systems. We start with an introduction to basic concepts of network research,

continuing with a repertoire of well studied network examples and a brief history

of previous modelling efforts. Next, we present a detailed investigation of scientific

collaboration networks, with special focus on the role of internal links in determin-

ing the networks’s scaling properties, and on limitations of certain measurements

imposed by the database.

Many real networks in nature and society share two generic properties: they are

scale free and they display a high degree of clustering. We show that the scale free

nature and high clustering of real networks are the consequence of a hierarchical

organization, implying that small groups of nodes form increasingly large groups

in a hierarchical manner, while maintaining a scale free topology. In hierarchical

networks the clustering coefficient follows a strict scaling law, which can be used to

identify the presence of a hierarchical organization in real networks. We find that

several real networks, such as the World Wide Web, actor network, the Internet

at the domain level and the semantic web obey this scaling law, indicating that
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hierarchy is a fundamental characteristic of many complex systems.

We then focus on the metabolic network of 43 distinct organisms and show that

many small, highly connected topological modules combine in a hierarchical man-

ner into larger, less cohesive units, their number and degree of clustering following

a power law. Within Escherichia coli we find that the uncovered hierarchical mod-

ularity closely overlaps with known metabolic functions. We show that enzyme

essentiality is not randomly distributed in the metabolic network, on the contrary,

essential enzymes tend to cluster into a few small, well defined modules of the

metabolism. Finally, we present an enzyme evolution-based model for metabolic

network growth. This model reproduces the observed scale free and hierarchical

organization of metabolic networks using local wiring rules.
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CHAPTER 1

INTRODUCTION TO NETWORKS

1.1 Motivation

Research into complex systems has had a long history of bottom-up approaches,

which break the system into small or elementary constituents and map out in-

teractions between these components. The development of science is marked by

ever-deeper exploration of the constituent parts of the world around us, as well as

the ways in which these parts assemble. The Standard Model describing elementary

particles and the four types of interactions governing our world is perhaps the most

successful example. Biology has developed a very detailed description of cellular

components such as the DNA molecule or the various proteins and metabolites.

Furthermore, many of the interactions that govern a cell’s life have been investi-

gated in great detail, including transcription of DNA, protein assembly and enzyme

function. On the other hand, natural and social systems display characteristics that

are fundamentally determined by their organization, emergent phenomena created

by their interacting constituents. In many cases, if one takes a step back and does

not focus on the variation in parts and interactions, a complex system as a whole is

made up of an assemblage of generic elements and connections; in other words, it

looks like a network [12, 58, 183]. For example, a cell’s metabolism is maintained

by a biochemical network, whose nodes are substrates and links are chemical reac-

tions [89, 160, 109, 101, 98]. But equally complex webs describe human societies,
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whose nodes are individuals and links represent social interactions [118, 208]; the

World Wide Web (WWW) [13, 127, 115, 34], where nodes are Web documents con-

nected by URL links; the scientific literature, whose nodes are publications and links

are citations [175, 50, 176], or the language made of words and linked by various

syntactic or grammatical relationships between them [189, 57, 73].

Due to the diversity and large number of the nodes and interactions, the topology

of these evolving networks remained largely unknown and unexplored prior to the

last decade. Yet, the inability of contemporary science to address the properties of

complex networks limited advances in many disciplines, including molecular biology,

computer science, ecology and the social sciences. The recent availability of system-

level data on the network of interactions in large numbers of systems has opened

the door for interdisciplinary research in fields where the behavior of the system

as a whole is a central question. Recognizing generic organizational principles and

order behind the diversity and apparent randomness of these different systems has

certainly been a surprise along the way.

Two properties of real networks have generated considerable attention. First,

many networks display a high degree of clustering, measured by the clustering co-

efficient [211] (the probability that a node’s two first neighbors are also connected).

Empirical results indicate that the clustering coefficient, averaged over all nodes, is

significantly higher for many real networks than for a random network of similar

size [211, 12, 58], and it is to a high degree independent of the number of nodes in the

network [12]. At the same time, many networks of scientific or technological interest,

ranging from the World Wide Web [13] to biological networks [101, 206, 98, 205]

have been found to be scale free [20, 21]: there is no well-defined “connectivity

scale” that approximates the degree (number of connections) of most nodes in the

system. Instead, the distribution of degrees follows an inverse power law with expo-
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nents between 2 and 3, indicating that these systems have very large connectivity

fluctuations. Most nodes have one or two links, but there are a few hubs with very

large degrees. The scale free property and strong clustering are not exclusive, but

they coexist in a large number of real networks including metabolic webs [101, 206],

the protein interaction network [98, 205], the world wide web [13] and some social

networks [149, 147, 22].

As an introduction to the research that uncovered some of the generic properties

of complex networks, we next summarize the main concepts used to characterize

these systems. In particular, we offer a short account of specific real networks that

the network community mostly focused on, some of which we examine in more detail

in later chapters.

1.2 Properties of Complex Networks

The study of networks has its roots in graph theory in mathematics, going

back to Euler, who studied some properties of a small graph defined by bridges

in Königsberg.1 Up to the landmark paper of Erdős and Rényi [64] in 1959, math-

ematics focused on the properties of large, ordered graphs. Erdős and Rényi intro-

duced randomness for the first time to account for some of the properties of classes

of networks. The community of physicists who started to investigate real networks

such as the World Wide Web or scientific citations linking papers borrowed concepts

from graph theory, helping them with the development of several new concepts that

characterize network properties.

1The river Pregel crossing Königsberg has two islands caught between its branches, connected
to the main land and each other by seven bridges. The puzzle of the town, asking if one can
cross all the bridges without crossing the same one twice was resolved in 1736, in a short paper
by Leonard Euler. He proved that such a walk does not exist, due to properties of the underlying
graph [19].
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Degree Distribution

Degree (or connectivity), the number of links k a node has, is the most elemen-

tary property of a node. The overall graph is characterized by the average degree,

〈k〉. Yet, as noted above, the average degree does not capture the potential de-

gree variations present in the network, which is better characterized by the degree

distribution, P (k), providing the probability that a node has exactly k links.

Clustering

Nodes in many real systems exhibit a tendency to form tightly connected sub-

graphs. This property can be quantified by the clustering coefficient [211], a measure

of the degree to which the neighbors of a particular node are connected to each other.

For example, in a friendship network C reflects the degree to which friends of a par-

ticular person are friends with each other as well. Formally, the clustering coefficient

of node i is defined as

Ci =
2ni

ki (ki − 1)
(1.1)

where ni denotes the number of links connecting the ki neighbors of node i to each

other. Accordingly, we can define the average clustering coefficient of a network as

〈C〉 = 1

N

N
∑

i=1

Ci. (1.2)

Distance Measures

Processes taking place along the links of a network, such as package routing on

the Internet, travelling via air or contacting a virus from an infected individual are

often affected by the length of the paths between two nodes through the network.

In most graphs, there are many paths connecting any two nodes i and j, thus a

useful distance measure is the length of the shortest path, lij. The mean shortest
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path length, defined as

〈l〉 = 2

N(N − 1)

N
∑

i=1

N
∑

j=i+1

lij (1.3)

offers a measure of the network’s navigability. Another distance measure of a net-

work is its diameter, the largest distance between two nodes in the system. This

quantity has similar scaling behavior to the average path length.

Networks that can be “crossed” by a small number of steps despite their often

large size inspired the concept of small world networks, first illustrated on social

networks.2 This small world property characterizes most complex networks from

actors in Hollywood [211] to coauthorship of scientific papers [149] or metabolites

in a cell [206, 71].

Degree Correlations

Degree correlations describe some organizational properties of networks that the

degree distribution does not address: Given a degree sequence of all the nodes, do

high-degree vertices in a network preferentially associate with other high-degree ver-

tices, or they are mainly connected to low-degree ones? This question has different

types of answers depending on the level of detail one wishes to use to address it. The

degree correlation coefficient [150] is a number between -1 and 1, representing the

Pearson correlation coefficient3 of the degrees at either ends of an edge. Networks

in which hubs are preferentially connected to other hubs are called assortative, and

have a positive degree correlation coefficient. Social networks tend to be assortative,

while most of the networks in biology or communication tend to be disassortatively

2A surprising study conducted by social psychologist Stanley Milgram in 1967 [140] showed
that two people in the United States have an average of six degrees of separation on the social
acquaintance network, which makes our social universe a small world.

3The Pearson correlation coefficient of two arrays of numbers X = {x1, x2, . . . , xN} and Y =

{y1, y2, . . . , yN} is defined as r = (x−x)·(y−y)
σx·σy

, where over-line stands for the average of the quantity

under the line and σx ( σy) is the standard deviation of xi (yi).
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mixed: hubs in these networks preferentially connect to smaller nodes [150, 151].

More detailed representations of degree correlations are given by the mean degree

of the neighbors of a vertex as a function of its degree [164], or by two-dimensional

histograms of the degrees of the vertices at the two ends of an edge [134, 135].

The degree distribution P (k) and the k dependence of the clustering coefficient,

C(k), often share generic features across different systems, allowing us to classify

various networks. Parameters such as the average degree 〈k〉, average path length 〈l〉

and average clustering coefficient 〈C〉 characterize properties unique to the particular

network under consideration, thus they are less generic than the degree distribution

or the organization of clustering addressed in §4.

1.3 Networks Around Us

Advances in the field of complex networks facilitated by the increasing avail-

ability of electronic databases established a wide list of complex networks ranging

over several disciplines. These networks serve as canonical test systems for new

ideas in the field. A short account of some of them can help us lay groundwork for

understanding the research that uncovered their generic features as well as ways to

classify differences between them.

1.3.1 Social Networks

Scientific Collaboration Networks

Collaboration networks represent graphs of scientists (the nodes) who work(ed)

together, coauthoring at least one publication (the link). Our best characterized

databases are based on papers in biomedical research (from the MEDLINE archive),

astrophysics, condensed matter and high-energy physics (from the Los Alamos E-

print Archive and SPIRES) and computer science (from the NCSTRL Archive) over
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a five-year window [149, 147, 148], as well as mathematics and neuroscience over a

seven-year window [22]. All coauthorship networks display small world properties,

high clustering and degree distributions consistent with power law tails.

The Movie Actor Network

The Internet Movie Database (www.imdb.com) is the source of one of the largest

social networks open to study.4 Based on all movies since the 1980’s, the network

has over 400, 000 actors as its nodes and movies that represent the links between

them [211, 155]. The degree distribution of the actor network has a power law

tail [20, 16, 11], and its clustering coefficient is much larger than that of a random

network of similar size.

The Web of Human Sexual Contacts

Sexually transmitted diseases like AIDS spread on the subset of the social net-

work described by sexual relationships [26, 102, 117, 131, 143, 169]. Although precise

data about the links of this network is quite hard to collect, a few investigations

have given us insights about its topology. Liljeros et al. [131] have estimated the de-

gree distribution of the sex web using a survey about the number of sexual partners

of 2810 Swedish individuals. Their investigation shows that the distribution of the

number of sexual contacts of both both men and women follow power laws. This

finding has been confirmed by a study based on data from the National Survey of

Sexual Attitudes and Lifestyles in Great Britain, a sexual behavior study in rural

Zimbabwe and a study targeting gay men in London [182].

This finding has a strong impact on epidemiological studies aimed at eradicating

diseases spreading on sexual contact networks, as scale free networks with degree

4The number of actors from the two studies based on the content of the web page grew from
225, 226 nodes in 1998 [211] to 449, 913 nodes by 2000 [155].
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exponents under 3 were found to allow diseases with arbitrarily low virulence to

stay endemic and to show no improvement upon random immunization of their

nodes [165, 166, 51]. The exponents of the degree distributions are found to be

between 2.5 and 3.5, depending on the sex of the considered individuals as well as

the investigated time spans. There is a striking exception in the case of gay men,

where degree exponents of the sexual contact networks range between 1.5 and 2.

Networks Describing the Business World

The business world is a territory where the definition and characterization of

networks created and governed by the laws of economics are a new, expanding topic

of interest. For example, world trade defines a network of countries connected via

trade relationships, a small network with scale free degree distribution, and small

world characteristics [187]. An interesting study of business boards of Fortune 1000

companies (the 1000 US companies with the largest revenues) has shown that both

the network of company directors (connected by boards they both are members of)

and the dual network of boards (connected by shared directors) have small world

properties [48].

The large-scale vulnerabilities of banking systems are naturally related to the

topology of mutual credit-relation networks. An empirical study of the Austrian

bank network shows that its architecture falls in line with general observations

about most of real networks: it has a scale free degree distribution, very small path

length and strong clustering [33].

1.3.2 Technological and Communication Networks

Information exchange between people, companies or social groups of any kind

leads to quickly evolving networks of communication. These graphs, like the World

Wide Web, the e-mail or the phone-call networks are supported by physical infras-
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tructures that link the communication devices and cover most of the inhabited parts

of the planet. We first mention these technological graphs, followed by examples of

modern communication networks.

The Internet

The Internet, a network of physical cables between computers, routers and other

telecommunication devices, is one of the favorite models of complex network studies.

Its topology defined at two different levels of detail is continuously mapped, and

the huge number of nodes and links offer very good statistical grounds for the

measurement of many network features. At the most basic level the nodes are

routers, while edges are the physical connections between them. The Autonomous

System (AS) level of the Internet is a coarse-grained view of this system, where

each autonomous Internet domain (defined by local data routing, such as the whole

network domain of the University of Notre Dame) is represented by a single node.

Any two autonomous systems connected by a physical link are considered connected

in the AS level representation.

Maps at both levels have been publicly available since 1999 [69, 85, 35, 41], when

Faloutsos et al. [69] measured the degree distribution at both levels and concluded

that both follow power laws. Further studies of these networks showed that they

also display small world behavior with very small average path length (around 9 for

the router, 3 for the AS level Internet), along with high clustering coefficients [41,

222, 164].

Electronic Circuits

Electronic circuits define networks of logical gates connected by current-carrying

wires or junctions. These networks were also found to have, perhaps surprisingly,

scale free degree distributions [72]. They have been the focus of research on special
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subgraphs characteristic of different networks [141], as well as on the dynamics of

information flow [49].

Power Grids

Power grids are networks of generators, transformers and substations linked by

high-voltage transmission lines spanning a whole country or region, distributing

electric current. Statistical studies on the power grid covering western states in

the U. S. indicate that they are small world networks with relatively high average

clustering coefficient and an exponential degree distribution [211, 209, 16]. Recent

interest in vulnerabilities of the power grid has been triggered by extensive electricity

blackouts which affected large regions of the eastern United States [10].

Transportation systems such as airline route networks [16, 25], roads [106], rail-

ways [124, 186] and pedestrian traffic [42] or naturally occurring ones such as river

networks [52, 133, 177, 178] or blood vessels are further examples of networks shar-

ing some similarity with the Internet or the power grid: they all span a region of

physical space. The constraints enforced on their topology by the physical extent

of the links lead to distinct topological properties, as we discuss in §4.

E-mail Networks

The topology of e-mail networks with electronic addresses as nodes and e-mails

as the links has been investigated based on data stored in server log files [60, 88].

The importance of this communication network comes from its ability to spread

viruses, a process similar to natural virus spreading along social interactions. Thus,

the finding that e-mail networks have scale free degree distribution explains the

surprising prevalence of old viruses, in spite of easy-access anti-virus software [165,

166, 51].
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Phone-call Networks

The phone-call network connecting people who had long-distance conversation

via AT&T (in the course of one day), a large directed graph mapped out by Aiello et

al. [7, 8], was also found to have a power law degree distribution both for incoming

and outgoing calls.

1.3.3 Information Networks

In this section we discuss a few networks that in some sense capture the way

humans store, organize or structure information.

The World Wide Web

The World Wide Web (WWW) [94], often incorrectly referred to as the “Inter-

net” is a huge network of web-pages linked by directed URL links [126, 127, 34, 77].

It is the largest available network, with 2 · 108 nodes [34], yet is also very typical in

many of its properties: strong clustering and small world behavior with an average

path length estimated to be around 16 [34, 13, 6, 4]. Moreover, both distributions of

the ingoing and the outgoing links are power laws with scaling over more than five

orders of magnitude [13, 123, 115, 6, 4]. In a coarse-grained network representation

of the World Wide Web, each web domain like the whole www.nd.edu page system

is represented as a node, while any hyperlink from a document in this domain to

another domain defines an edge between them. This bird-eye view of the WWW

also gives us a scale free network, and an even smaller cyber-world: the average

path length of this graph is 3.1 [6, 4].

Citation Networks

Citation networks of different scientific areas reflect the way research papers build

on previous knowledge. They can be constructed using on-line databases of scientific
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papers; links of these networks are the references between them [50, 175, 185, 176].

These references are directed links, and studies of their topology indicate that the

in-degree distribution of these networks follow power laws [50, 175], while the out-

degree distribution has a well-defined maximum and an exponential tail [197].

Language Networks

Words in a human language can be linked in several ways [57, 73, 194]. Word

co-occurrence networks hint at methods used by people to organize concepts while

choosing them for communication [73, 74]. Defined as graphs of words linked

if they appear no more than two words apart with a frequency higher that a

chosen threshold, co-occurrence networks based on the British National Corpus

(http://info.ox.ac.uk/bnc/) were found to have a degree distribution with two

distinct regimes of power law scaling [73]. Semantic relations like hyponyms, hy-

pernyms5 and meronyms6 define a different linguistic network. A large database

(WordNet) containing 66, 025 nouns along with their semantic relationships allowed

for a study that showed this network to also have scale free and small world char-

acteristics [189]. A language network of words linked if they are synonyms [221]

reflects our way of building concepts of different levels of generality. Perhaps not

surprisingly, this abstraction of human language into a network also has a degree

distribution with power law tail, along with a very high clustering coefficient.

We end our discussion of example non-biological networks with Table 1.1, sum-

marizing a few of their properties along with some data-source references. A some-

what more detailed introduction to the biological networks relevant to recent systems

5A noun A is the hyponyms of B if it describes a subset of things corresponding to B, its
hypernyms: coat is a hyponym of clothing.

6A meronym of a word describes a physical part of what is described by this word: button is a
meronym of coat.

12



biology research follows.

TABLE 1.1. A LIST OF NON-BIOLOGICAL NETWORKS

Network Size 〈k〉 γin/γout Refs.

Coauthors, MEDLINE 1, 520, 251 18.1 2.5 [149]
Coauthors, LANL 52, 909 9.7 1.3 [149]
Coauthors, SPIRES 56, 627 173 1.03 [149]
Coauthors, computer sci. 11, 994 3.59 1.3 [149]
Coauthors, neuroscience 209, 293 11.54 2.1 [22]
Coauthors, mathematics 70, 975 3.9 2.5 [22]
Movie actors 212, 250 28.78 2.3 [21]
Sexual contacts, Sweden 2, 810 − 3.4 [131]
World trade 179 43 2.6 [187]
Company directors 7, 673 14.44 − [48]
Banks in Austria 883 35.7 1.72/3.1 [33]

Internet, AS 10697 5.98 2.4 [41]
Internet, Faloutsos 3, 888 2.57 2.48 [69]
Internet, Govindan 150, 000 2.66 2.4 [85]
Electronic circuits 20, 000 2.0 2.1 [72]
Power grid 4, 941 2.67 − [211]
E-mail 59, 912 2.88 1.49/2.03 [60]
Phone-call 53, 000, 000 3.16 2.1/2.1 [7]

WWW, Notre Dame 325, 729 4.51 2.1/2.45 [13]
WWW, Kumar 4× 107 7 2.1/2.38 [123]
WWW, Broder 2× 108 7.5 2.1/2.72 [34]
WWW, domains 260, 000 − 1.94/− [6]
Citation 783, 339 8.57 3/− [175]
Words, co-occurrence 460, 902 70.13 2.7 [73]
Words, synonyms 22, 311 13.48 2.8/2.8 [221]

Note: A list of real networks along with a few of their properties, such as size,
average degree 〈k〉, in- (γin) and out-degree (γout) exponents of the connectivity
distribution. Expanded after [12, 153, 154].
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1.4 Networks in Living Systems

Networks emerge in many disguises in biological systems, from food webs in

ecology to various biochemical nets in molecular biology. In particular, the wide

range of interactions between genes, proteins and metabolites in a cell are best

suited for a network representation. During the last decade, genomics has produced

an incredible quantity of molecular interaction data, contributing to maps of specific

cellular networks. The emerging fields of transcriptomics and proteomics have the

potential to contribute to the already extensive data sources provided by the genome

wide analysis of gene expression at the mRNA and protein level [161, 40, 37].

Indeed, extensive protein–protein interaction maps have been generated for a

variety of organisms including viruses [75, 137], prokaryotes, like H. pylori [171]

and eukaryotes, like S. cerevisiae (baker’s yeast) [97, 96, 184, 196, 79, 91, 98], C.

elegans (worm) [130] and D. melanogaster (fruit fly)[83]. Beyond the current focus

on uncovering the structure of genomes, proteomes and interactomes of various or-

ganisms, some of the most extensive data sets are the metabolic maps [160, 109],

catalyzing an increasing number of studies focusing on the architecture of the

metabolism [101, 71, 206].

1.4.1 Metabolic Networks

The metabolism of the cell is a collection of all of its chemical reactions, respon-

sible for synthesizing all of its building blocks and for obtaining its energy. The

structure of metabolic networks was addressed by two independent studies by Fell

and Wagner [71, 206] and Jeong et al. [101]. Fell and Wagner assembled a list of

chemical reactions representing the central routes of the energy metabolism and

small-molecule building block synthesis in E. coli [71, 206]. A substrate graph was

defined by the nodes representing all metabolites, two substrates being considered
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linked if they occurred in the same reaction. They found the substrate graph to

be scale free with glutamate, coenzyme A, 2-oxoglutarate, pyruvate and glutamine

having the highest degree; substrates viewed as an evolutionary core of the E. coli.

At the same time, Jeong et al. analyzed the metabolic networks of 43 organisms

representing all three domains of life [101], finding that the power law degree distri-

bution for both incoming and outgoing edges holds for organisms of all kingdoms.

Furthermore, the average separation [101] between nodes as well as the average

clustering coefficient [206, 71] has roughly the same value for all organisms under

consideration, regardless of the number of substrates found in the given species. In-

terestingly, the ranking of the most connected substrates is largely identical for all

organisms. A recent study comparing the system-level properties of metabolic net-

works in various organisms indicates that the structural features of these networks

are more conserved than the components themselves [168, 215].

1.4.2 Protein Interaction Networks

Protein interactions offer another opportunity to study cellular networks, con-

sidering proteins as nodes and physical interactions (binding) as links. It has been

shown that interaction networks of S. cerevisiae (baker’s yeast) [196, 220, 219], H.

pylori [171], C. elegans (worm) [207] and D. melanogaster (fruit fly) [83] proteins

exhibit distinct scale free behavior [98, 205, 171, 83]. Although protein interac-

tion data is derived from different sources and is retrieved by different methods,

the emergence of the scale free property appears to be a robust feature. Scale free

networks are vulnerable upon targeted attack on their highly connected nodes [14].

Therefore, mutations of highly interacting proteins are expected to be lethal for the

cell, a prediction supported by explicit measurements [100].
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1.4.3 Protein Domain Networks

Proteins are made of long amino acid chains that fold in a particular three-

dimensional structure, which allows them to perform different functions. These

three-dimensional structures are not completely different from protein to protein.

Certain regions of the amino acid chain fold into tight helical structures called α

helices. Another characteristic structure is the β sheet, a planar arrangement in

which consecutive amino acids are parallel to each other, with opposite orientation.

These two main structural building blocks define the secondary structure or a pro-

tein. The α helices and β sheets linked by short turns or random coils (regions of

the chain which lack secondary structure) often assemble into structural subunits

called domains, stable folds shared among many proteins.7 These subunits are the

functional building blocks of proteins: often each domain has a separate, well de-

fined function such as binding a small metabolite, spanning the plasma membrane,

containing the catalytic or the DNA-binding site, or providing a surface to bind

specifically to another protein.

The domain architecture of proteins was studied by considering protein domains

as nodes and their co-occurrence in proteins as links [216, 17, 217], documenting

again the emergence of a scale free architecture. Domains which appear in cellu-

lar functions crucial for the maintenance of multi-cellular organisms, such as signal

transduction and cell-cell contacts, were found to be the most connected. Interest-

ingly, as one looks at organisms of increasing complexity, the slope of the degree

distribution of their domain networks is found to decrease. Similarly, interactions

of domain families generated from sequence and structural data [162, 217] revealed

that highly connected domains on sequence level appear to be the most frequently

7Representative examples are the zinc finger, a protein domain that binds to DNA, made of
two β sheets and an α helix, or the helix-turn-helix domain that also binds to DNA.
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interacting as well.

1.4.4 Genetic Regulatory Networks

A living cell receives signals and reacts to information received from its environ-

ment, such as presence of food or toxins. Similarly, different developmental processes

ask for a different set of proteins performing different functions during a cell cycle.

The machinery at the heart of a living system that integrates information and gov-

erns the cellular processes is the genetic regulatory network. A few genes (typically

a few hundred out of a few thousands in a simple organism) are responsible for

coding proteins with regulatory functions. These genes are copied into messenger

RNA and translated into transcription factor proteins. These regulatory proteins

attach to DNA upstream another gene, where their presence helps or represses the

binding of the protein complex (RNA polymerase) which copies the gene code into

messenger RNA. By thus increasing or decreasing the mRNA level of this regulated

gene, the transcription factor is responsible for increase or decrease in the number

of proteins encoded by the regulated gene. In other words, one gene is able to turn

the biological function encoded by another gene on or off. The network made of

genes as nodes and genetical regulatory interactions as links is a dense information

processing network, the coordinator of a cell’s life. Many of these interactions are

known in several organisms, but no precise method yet exists for a system-level

mapping of the full network [128]. Nonetheless, some on-line databases summarize

the information collected by individual experiments [180, 46], allowing the recon-

struction of partially complete networks in E. coli and S. cerevisiae (baker’s yeast)

regulation [141, 188]. Generic statistical features we have seen in the previous cellu-

lar networks, such as scale free degree distribution and high clustering, characterize

these networks as well.
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1.4.5 Neural Networks

The worm C. elegans is the only organism with a completely mapped neural

network. It has 282 neurons and close to 2000 connections (synapses or a gap

junctions) [212]. This small but quite dense network has an exponential degree

distribution and quite high clustering coefficient [211, 16].

1.4.6 Functional Network of the Brain

Functional magnetic resonance imaging techniques can be used to measure the

activity of different regions of the human brain. Correlations between these regions

can define a functional network of brain sites connected by common patterns of

activity. These networks are dynamic, and the details of their architecture is inter-

esting for functional studies of the brain. Nonetheless, their large-scale organization

is scale free, with high clustering coefficients [62].

1.4.7 Ecological Networks

Food webs are networks of species linked by predator–prey interactions. These

networks have been mapped out in a few habitats by ecologists who use them to

investigate interactions between different species [167]. A few independent studies

on food webs of different sizes have shown that they are highly clustered, and the

average path length between species is below 3 [213, 142, 38]. The nature of their

degree distribution is unclear, mostly due to the small size of these systems. Some

studies found power law [142], others exponential behavior [38, 39].

We summarize the properties of the aforementioned biological networks with

Table 1.2.

Networks offer us a new way to categorize systems of very different origin under a

single framework. This approach has uncovered unexpected similarities between the

organization of various complex systems such as scale free degree distribution, small
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TABLE 1.2. A LIST OF BIOLOGICAL NETWORKS

Network Size 〈k〉 γin/γout Reference

Metabolic, E. coli 778 7.4 2.2/2.2 [101]
Protein, S. cerevisiae (DIP) 1870 2.39 2.4 [98]
Protein, S. cerevisiae (UETZ) 985 1.83 2.5 [205]
Protein, C. elegans 3024 3.66 − [130]
Protein, D. melanogaster 4679 2.04 1.6 [83]
Protein Domain Families 876 9.32 1.6 [162]
Protein Domain (PromDom) 5995 2.33 2.5 [216]
Protein Domain (Pform) 2478 1.12 1.7 [216]
Protein Domain (Prosite) 13.60 0.77 1.7 [216]
Genetic reg., E. coli 423 2.59 1.3 [188]
Neural, C. elegans 282 14 − [212]
Brain sites, H. sapiens 4891-31530 4.12-13.41 2 [62]
Food web, Ythan estuary 134 8.7 1.05 [142]
Food web, Silwood park 154 4.75 1.13 [142]

Note: A list of biological networks along with a few of their uncovered properties.
We indicate the size of the network, its average degree 〈k〉. For directed networks we
list both the in-degree (γin) and out-degree (γout) exponents, while for the undirected
networks these values are identical. Expanded after [12, 154].

world behavior and high clustering coefficient. These common features indicate

that the networks describing them are governed by generic organization principles

and mechanisms. Understanding the driving forces which invest different networks

with similar topological features enables statistical physics as well as systems biol-

ogy to combine the numerous details about various complex systems into a single

framework, offering means to address their structure as a whole.
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CHAPTER 2

MODELLING REAL NETWORKS

In the past few years a series of network models have been developed to ex-

plain nontrivial generic properties of real-world networks, such as the small world

property, scale free degree distribution or high degree of clustering. There is a rich

literature of models aimed at both capturing properties common to most networks

and explaining features particular to specific real networks. In this chapter we re-

view two of the most influential models, followed by a detailed analysis of scientific

collaboration networks.

2.1 The Erdős–Rényi Model

Following the founding work of Erdős and Rényi in the 1950’s [64, 65, 67,

66], large networks with no apparent design principles were described as random

graphs [29], a model proposed as the simplest and most straightforward realization

of a complex network.1

According to the binomial model2 of an Erdős–Rényi (ER) random graph [29,

64, 12], one starts with N nodes and connect each pair of nodes with probability

p, creating a graph with approximately pN(N − 1)/2 randomly distributed links

1Detailed review of random networks is available in the books of Bollobás [29], Cohen [44]
(focusing on the similarity between phase transitions and random graph theory) and Karoński and
Rućinski [108] (focusing on the history of the topic).

2The original formulation of the Erdős–Rényi model in their original paper [64] is an ensemble
of random graphs, all of which are equally probable realizations of the following algorithm: one
randomly chooses n edges of the N(N − 1)/2 possible edges between N nodes, and connects those
only. This formulation is equivalent to the binomial ER model.
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(Fig. 2.1a,b). The majority of graphs generated in this manner have a few distinctive

properties, some of which are characteristic to real networks as well.

2.1.1 Emergence of a Giant Component

Erdős and Rényi showed that there is a a threshold probability value, pc, which

separates two classes of random networks. If p < pc where pc = 1/N , the graph

consists of small, isolated groups of nodes with roughly the same size. As p reaches

the threshold value pc, suddenly a giant connected component emerges containing

most nodes. In fact, the ER model is equivalent to infinite-dimensional percolation,

from the same universality class as mean-field percolation [193].

2.1.2 Degree Distribution

A fairly accurate estimate of the degree distribution can be easily calculated if

one assumes that the nodes of the graph are independent: node i having the exact

degree ki does not affect the possible degrees of any other node. This assumption

is not strictly true due to the finite ways links can be arranged between N nodes,

nonetheless the full degree distribution derived by Bollobás [29] does not significantly

differ from the independent-node approximation [12].

The probability that a node i in the graph has k links is the product of proba-

bilities of having these k links (pk) and not having the rest of the possible N −k−1

links ((1− p)N−k−1) weighted by the ways these k links can be placed (Ck
N−1):

Pi(k) = Ck
N−1 p

k (1− p)N−k−1. (2.1)

Assuming that all nodes have the same probability of having exactly k links, the

degree distribution of a random graph is described by equation (2.1), a binomial

distribution with a Poisson distribution limit as N →∞:

PER(k) = e−pN
(pN)k

k!
= e−〈k〉

〈k〉k
k!

. (2.2)
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The Poisson degree distribution indicates that random networks are fairly homo-

geneous (Fig. 2.1b,c): it was proved that even for high values of p the maximum

degree is the same order of magnitude as the average degree [12]. Almost all net-

works described in §1, however, are characterized by power law degree distributions,

a property the ER model does not account for. Random connectedness does not

allow the emergence of hubs, nor the very large number of low-connectivity nodes.

(a) Construction (b) A small ER network
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Figure 2.1. Erdős–Rényi random networks. (a) The model is constructed by laying
down N nodes and connecting each pair of nodes with probability p. The figure
shows a particular realization of such a network for N = 10 and p = 0.2. (b) The
random network generated by the Erdős–Rényi model is rather homogeneous, i.e.
most nodes have approximately the same number of links. (From [14]) (c) The
degree distribution P (k) is strongly peaked at k = 〈k〉 and decays exponentially for
large k.

2.1.3 Average Path Length

The average path length of a random network can be estimated using the ap-

proximation that all nodes in the network have 〈k〉 connections. Thus, the number

of nodes one step away from any node is 〈k〉, two steps away there are roughly

〈k〉2 nodes and so on. We can reach all N nodes in 〈l〉 steps on average, leading to

N = 〈k〉〈l〉. Thus, the average path length of a random network is:

〈l〉ER '
lnN

ln 〈k〉 , (2.3)
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with only logarithmical dependence on the system size.

The diameter of a random graph [43] has similar properties as the average path

length, furthermore for most values of p almost all possible graphs have a diameter

very close to the value estimated in equation (2.3).

We have seen in §1 that most real-world networks display small world behavior:

their average path length turns out to be very close to the average path length of

random graphs with the same size (same number of nodes and links) [12]. The ER

model elegantly accounts for the small world property of real networks.

2.1.4 Clustering Coefficient

Almost all complex networks mentioned in §1 display strong clustering of their

nodes. However, in a random graph any two first neighbors of a node are linked

with probability p, leading to

〈C〉ER = p =
〈k〉
N

. (2.4)

This value is typically much smaller than the actual clustering coefficients estimated

for real networks (see Fig. 9 in [12]). Random networks are not just homogeneous

in their node degree values, they also lack tight subgraphs. On the other hand, real

networks are very heterogeneous in both the degree values and clustering of their

nodes.

The Erdős–Rényi model has guided our thinking about complex networks for

decades. The growing interest in complex systems prompted many scientists to

ask whether these systems share some organizing principles apart from random-

ness. We have seen that the topology of the networks underlying many complex

systems systematically deviates from a random graph, a good indication of similar

organization.
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2.2 scale free Network Models

An important starting point in the scientific quest of organizing principles that

govern different real-world networks is a 1999 paper by Barabási and Albert [20].

They were the first to notice what is today considered a trivial property of many

real networks: they have scale free degree distributions [19]. Aiming to explain

the emergence of these topologies observed both in the World Wide Web map [13],

the movie actor network and the neural network of the C. elegans worm, Barabási

and Albert point out the importance of the evolution of real networks. The model

they proposed was fundamentally different from the Erdős–Rényi approach or other

existing network models,3 due to the fact that they looked at the emergence of

network connectivity patters as a result of the way real networks grow. This shift

of approach not only allowed them to construct a model that shows how scale

free graphs can emerge, but it also opened the door for understanding the specific

mechanisms that governed the growth of many of the investigated real networks.

2.2.1 The Barabási–Albert Model

The first principle behind the philosophy of the Barabási–Albert (BA) scale free

model is that real networks grow constantly through addition of new nodes that link

to nodes already present in the system. Second, in most real networks there is a

higher probability for a new-coming node to link to the existing nodes that already

have large number of connections, a property called preferential attachment [20, 21].

3The observation that real-world networks show strong clustering, unlike the complete lack of
local organization of random networks, have inspired Watts and Strogatz to introduce a network
model which reconciles clustering properties typical of regular lattices with the small world property
of random networks [211]. They start with a circle of nodes connected to their first k neighbors,
then they pick a random fraction p of the links and reconnect one end to any randomly chosen node.
For a wide parameter range these networks become small world (i.e. their average path length
is small) while still retaining a high clustering coefficient. Nonetheless, they are homogeneous
in their connectivity: they have a Poisson-like degree distribution, failing to reproduce the hubs
characteristic to real networks.
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Indeed, we link with higher probability to a more connected (thus better known)

document on the WWW, or we tend to repeatedly cite much cited papers. These

two ingredients, growth and preferential attachment, inspired the BA model which

leads to networks with power law degree distribution.

The algorithm of the model goes as follows [20, 21] (see Fig. 2.2a):

• Growth. Starting with a small core of m0 nodes, at every time step a new

node is added with m ≤ m0 edges, that connect the new node to m different

nodes already present in the system.

• Preferential attachment. The m nodes to which the new one connects to

are chosen with probabilities Πi proportional to their degree, ki:

Πi =
ki

∑

j kj
. (2.5)

(a) Construction (b) A small BA network
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Figure 2.2. Barabási–Albert scale free network. (a) The model is constructed from
m0 initial nodes by subsequent addition of new nodes that connect to existing ones
with probabilities proportional to their degree. (b) The scale free network generated
by the BA model is not homogeneous, hubs with degrees orders of magnitude larger
than the average coexist with many very low-connectivity nodes. (From [14]) (c)
The P (k) degree distribution follows a power law, P (k) ∼ k−γ , with degree exponent
γ = 3.

Networks generated by this growth process have a few hubs with degrees orders of
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magnitude larger than the average degree (Fig. 2.2b,c), and their degree distribution

is a power law with degree exponent γ = 3.

2.2.2 Mean-field Calculation of the Degree Distribution

The continuum approach used in [20, 21] to calculate the degree distribution of a

BA network follows the time-dependence of individual node degrees during network

growth. It approximates the degree of a node with a continuous variable changing

in time at a rate proportional to Π(ki) times the number of newly created links:

∂ki
∂t

= mΠ(ki) = m
ki

∑N−1
j=1 kj

. (2.6)

The sum in the denominator is twice the number of edges at time t:
∑N−1

j=1 kj = 2mt,

thus

∂ki
∂t

=
ki
2t

. (2.7)

Using the initial conditions that each node i is introduced at time ti with ki(ti) = m

links, we have

ki(t) = m

√

t

ti
. (2.8)

Further, the probability that a node has a degree ki(t) < k is given by:

P (ki(t) < k) = P
(

ti > t
)

where t =
m2t

k2
. (2.9)

The probability that a node entered the system at the time-step ti is the same for

all nodes,

P (ti) =
1

m0 + t
, (2.10)

thus the probability that ti falls in the (t, t) interval is:

P
(

ti > t
)

= P (ki(t) < k) = 1− t

m0 + t
= 1− m2t

k2(m0 + t)
. (2.11)

The degree distribution P (k) can be obtained from equation (2.11) using

P (k) =
∂P (ki(t) < k)

∂k
⇒ (2.12)
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PBA(k) =
2m2t

m0 + t

1

k3
, (2.13)

in good agreement with measurements from large simulated networks [21, 12].

There are other mean-field approaches which lead to similar formulas of the de-

gree distribution of the BA model [58], such as the master-equation approach pro-

posed by Dorogovtsev, Mendes and Samukhin [59] or the rate-equation approach

introduced by Krapivsky, Redner and Leyvraz [121]. These approaches are equiv-

alent, and offer the same asymptotic results as the continuum theory. The exact

solution of the degree distribution for the Barabási–Albert model has been worked

out by graph theorists Bollobás and Riordan [31].

2.2.3 Properties of the Barabási–Albert Model

Average Path Length

In §2.1.3 we have seen that random networks display small world property and

their average path length scales as the logarithm of N . Analytical results have also

been obtained for the Barabási–Albert network [32, 45, 43] showing that they are

“ultra-small:” the average path length scales as

〈l〉BA ∼ ln(lnN). (2.14)

This result actually extends beyond the Barabási–Albert model and it was shown

to hold for any large scale free network with a degree exponent between 2 and 3, a

range of exponents covering most of the studied real-world networks.

Clustering Coefficient

We have seen that most real-world networks have large average clustering coeffi-

cients due to the abundance of tight subgraphs in them. However, the construction

of the Barabási–Albert model is very homogeneous when it comes to subgraphs:

there is no mechanism other than chance by which a network built using the BA
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model develops many tightly connected neighborhoods. Indeed, analytical calcula-

tion of the clustering coefficient [116, 30] shows that

〈C〉BA ∼
(lnN)2

N
. (2.15)

Thus the clustering coefficient of the BA model decreases with the system size,

although this decrease is slower than that of a random network. The model was not

aimed to capture the inhomogeneity of the tight subgraphs existent in real networks.

2.2.4 Comments on Preferential Attachment

The Barabási–Albert model uses a very simple, linear preferential attachment

rule for network evolution: Π(k) ∼ k. Real systems have many different phenomena

affecting this rule, from aging (or saturation) of nodes [16, 54], to internal edge ad-

dition,4 removal [56, 22], rewiring [11], or existence of nodes with different inherent

abilities (fitness) to compete for links [27, 28, 68]. Nonlinearities in the attachment

rule result in deviations from power law degree distribution [121]. Krapivsky, Red-

ner, and Leyvraz [121] showed that sub-linear preferential attachment (as observed

in the movie actor network [11] or in the neuroscience coauthorship graph [22, 99])

can lead to a stretched exponential degree distribution, while a super-linear attach-

ment rule leads to “winner takes all” scenario, with a central node taking a significant

fraction of the edges. Strictly scale free topologies only emerge as a result of linear

preferential attachment.

Networks for which the time each node joined the network is known (coauthor-

ship networks, the citation network, the actor collaboration network and the AS

level Internet [99, 146, 164]) allow a direct measurement of the k–dependence of the

Π(k) attachment rule. The Π(ki) probability that a node i with ki(t) degrees at

4For a detailed account of the dynamics of constant internal link addition in scientific collabo-
ration networks see §3 [22].
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time t acquires the next incoming link can be approximated by the ki(t+∆t)−ki(t)

change of its degree in a time window ∆t much shorter than the total lifetime of the

network, divided by the total number of links added to the system in this ∆t time

window, ∆k:

Π(ki) ∼
ki(t+∆t)− ki(t)

∆k
. (2.16)

To reduce the fluctuations on the data from the four above mentioned networks,

Jeong et al. calculated the cumulative preferential attachment, defined as

κ(k) =
k
∑

ki=0

Π(ki). (2.17)

Figure 2.3 indicates that real networks show behavior close to the linear preferential

attachment assumed by the BA model. However, while for the Internet [99, 164]

and the citation network [99], Π(k) depends linearly on k, for the neuroscience

collaborations and the movie actor network this dependence is sub-linear with α =

0.8± 0.1 [99].
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(d) Movie actors

Figure 2.3. Measurement of the cumulative preferential attachment. Dashed line
corresponds to linear preferential attachment, the continuous line to no preferential
attachment. (From [99])

2.2.5 Consequences of the scale free Topology

An important consequence of the existence of hubs in scale free networks is

that these systems exhibit high tolerance to random perturbations but are sensi-
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tive to targeted attack on the highly connected nodes [14]. Accordingly, failure of

randomly selected nodes cannot destroy the network’s integrity. However, the sys-

tematic removal of the hubs will rapidly fragment the network. This feature is of

particular importance for biological systems, since it reflects the biochemical net-

work’s resilience against random mutations. Therefore, highly connected nodes in

biochemical networks might be potential candidates for drug targets. The presence

of hubs in a scale free network has a fundamental impact on virus spreading as

well. Classical epidemiological models predict that infectious diseases with trans-

mission probability under an epidemic threshold will inevitably die out. However,

in scale free networks the epidemic threshold is reduced to zero [165]. Thus, as

some social and sexual networks are known to exhibit a scale free topology [131],

even extremely weakly infectious viruses can spread and prevail, making random

immunization ineffective.

The scale free model uncovers some of the origins of the inhomogeneities observed

in real networks, shedding light on the mechanisms by which hubs appear and play

central role in the navigability and robustness of these systems. The next step in

our journey towards a more complete understanding of real network topology is

presented in more detail in chapter 4, preceded by a detailed investigation of the

evolution of scientific collaboration networks.
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CHAPTER 3

MODELLING SCIENTIFIC COLLABORATION NETWORKS

3.1 Motivation

One of the most prolific mathematicians of all time, Paul Erdős has written over

1400 papers with over 500 coauthors. This unparalleled productivity inspired the

concept of the Erdős number, which is defined to be one for his many coauthors,

two for the coauthors of his coauthors and so on. The tightly interconnected na-

ture of the scientific community is reflected by the conjecture that all publishing

mathematicians, as well as many physicists and economists have rather small Erdős

numbers [1]. The coauthorship networks is of general interest for understanding the

topological and dynamical laws governing complex networks, as it represents the

largest publicly available computerized social network.

Social networks have been much studied in social sciences [208, 118]. A general

feature of these studies is that they are restricted to rather small systems, and of-

ten view networks as static graphs, whose nodes are individuals and links represent

various quantifiable social interactions. In contrast, recent approaches with method-

ology rooted in statistical physics focus on large networks, searching for universality

both in the topology of the graph and in the dynamics governing its evolution. In

addition to uncovering generic properties of real networks, these studies signal the

emergence of a new set of modelling tools that considerably enhance our ability to

characterize and model complex interactive systems. To illustrate the power of these
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advances we choose to investigate the collaboration network of scientists in detail.

Newman has taken an important step towards applying modern network ideas to

collaboration networks [149, 147, 148] by studying several large databases, focusing

on several fields of research over a five-year period. He established that collabora-

tion networks have all the general ingredients of small world networks: they have

a surprisingly short node-to-node distance and a large clustering coefficient [149],

much larger than the one expected from a random Erdős-Rényi type network of

similar size and average connectivity. Furthermore, the degree distribution appears

to follow a power law [147, 148].

Our study takes a different, but complementary approach to collaboration net-

works than that followed by Newman. We view collaboration networks as prototype

of evolving networks, where the accent is on dynamics and evolution. Indeed, the

coauthorship network constantly expands by the addition of new authors to the

database, as well as the addition of new internal links representing papers coau-

thored by authors that were already part of the database. The topological prop-

erties of these networks are determined by these dynamical and growth processes.

Consequently, in order to understand their topology, we first need to understand

the dynamical process that determines their evolution. In this aspect Newman’s

study focuses on the static properties of the collaboration graph, while our work

investigates the dynamical properties of these networks. We show that such dy-

namical approach can explain many of the static topological features seen in the

collaboration graph.

It is important to emphasize that the properties of the coauthorship network

are not unique. The WWW is also a complex evolving network, where nodes and

links are added (and removed) at a very high rate, the network topology being

profoundly determined by these dynamical features [20, 13, 127, 126]. The actor
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network of Hollywood is very similar to the coauthorship network, because it grows

through the addition of new nodes (actors) and new links (movies linking existing

actors) [209, 211, 11]. Similarly, the nontrivial scaling properties of many cellular,

ecological or business networks are all determined by dynamical processes that con-

tributed to the emergence of these networks. So why single out the collaboration

network as a case study? A number of factors have contributed to this choice. First

we needed a network for which the dynamical evolution is explicitly available. That

is, in addition to a map of the network topology, it is important to know the time at

which the nodes and links have been added to the network, crucial for revealing the

network dynamics. This requirement reduces the currently available databases to

two systems: the actor network, where we can follow the dynamics by recording the

year of the movie release, and the collaboration network for which the paper pub-

lication year allows us to track the time evolution. Of these two, the coauthorship

data is closer to a prototypical evolving network than the Hollywood actor database

for the following reasons: in the science collaboration network the coauthorship

decision is made entirely by the authors, i.e. decision making is delegated to the

level of individual nodes. In contrast, for actors the decision often lies with the

casting director, a level higher than the node. While in the long run this difference

is not particularly important, the collaboration network is still closer in spirit to a

prototypical evolving network such as social systems or the WWW.

Our work stands on three pillars. First, we use direct measurements on the avail-

able data to uncover the mechanism of network evolution. This implies determining

the different parameters and uncovering the various competing processes present in

the system. Second, building on the mechanisms and parameters revealed by the

measurements we construct a model that allows us to investigate the large-scale

topology of the system, as well as its dynamical features. The predictions offered by
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a continuum theory of the model allow us to explain some of the results that were

uncovered by our as well Newman’s measurements. The third and final step will

involve computer simulations of the model, serving several purposes: (i) It allows

us to investigate quantities that could not be extracted from the continuum theory;

(ii) Verifies the predictions of the continuum theory; (iii) Allows us to understand

the nature of the measurements we can perform on the network, explaining some

apparent discrepancies between the theoretical and the experimental results.

3.2 Databases: Coauthorship in Mathematics and Neuroscience

In order to get information on the topology of a scientific coauthorship web one

needs a complete data-set of the published papers, ideally from the birth of the

discipline until today. However, computer databases cover at most the past several

decades. Thus any study of this kind needs to be limited to only a recent segment

of the database. This will impose unexpected challenges that need to be addressed,

since such limited data availability is a general feature of most networks.

The databases considered by us contain article titles and authors of all relevant

journals in the field of mathematics (M) and neuroscience (NS), published in the

period 1991–98. We have chosen these two fields for several reasons. A first factor

was the size of the database: biological sciences or physics are orders of magnitude

larger, too large to address their properties with reasonable computing resources.

Second, the selected two fields offer sufficient diversity by displaying different pub-

lishing patterns: in NS collaboration is intense, while mathematics, although there is

increasing tendency towards collaboration [87], is still a basically single-investigator

field.

In mathematics our database contains 70,975 different authors and 70,901 papers

for an interval spanning eight years. In NS the number of different authors is
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Figure 3.1. (a) Cumulative number of papers for the M and NS databases in the
period 1991–98. The inset shows the number of papers published each year. (b)
Cumulative number of authors (nodes) for the M and NS databases in the period
1991–98. The inset shows the number of new authors added each year.

209,293 and the number of published papers is 210,750. A complete statistics for the

two considered database is summarized in figure 3.1, where we plot the cumulative

number of papers and authors for the period 1991–98. We consider “new author”

an author who was not present in the database from 1991 up to a given year.

Before proceeding we need to clarify a few methodological issues that affect the

data analysis. First, in the database the authors are represented by their surname

and initials of first and middle name, thus there is a source of error in distinguishing

some of them. Two different authors with the same initials and surname will appear

to be the same node in the database. This error is important mainly for scientists

of Chinese and Japanese descent. Second, a given author will occasionally use one

or two initials in different publications, and in such cases he/she will appear as

separate nodes. Newman [149] showed that the error introduced by those problems

is of the order of a few percent. Our results are also affected by these methodological

limitations, but we do not expect that it will have a significant impact on our results.
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3.3 Data Analysis

In this section we investigate the topology and dynamics of the two databases,

M and NS. Our goal is to extract the parameters that are crucial to the understand-

ing of the processes which determine the network topology, offering input for the

construction of an appropriate model.

3.3.1 Degree Distribution Follows a Power Law

The degree distributions of both the M and NS data indicate that collaboration

networks are scale free. The power law tail is evident from the raw, uniformly

binned data (Fig. 3.2a,b), but the scaling regime is better seen on the plot that uses

logarithmic binning, reducing the noise in the tail (Fig. 3.2c). The cumulative data

with logarithmic binning indicates γM = 2.4 and γNS = 2.1 for the two databases.

We will see in the coming sections that the data indicates the existence of two

scaling regimes with two different scaling exponents. The combination of these

two regimes could easily give the impression of an exponential cutoff in the P (k)

for large k. Further analysis, offered in §3.4 indicates that a consideration of two

scaling regimes offers a more accurate description.

3.3.2 Average Shortest Path Length Decreases in Time

Determining the average shortest path length in a large network is a rather time-

consuming procedure. Usually sampling a fraction of all nodes and determining their

distance from all other points gives reasonable results. The results for the cumulative

database are shown in figure 3.2d.

The figure indicates that 〈l〉 decreases in time, which is highly surprising be-

cause all network models so far predict that the average shortest path length should

increase with system size [13, 29, 32]. The decreasing trend observed by us could
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Figure 3.2. Degree distribution of the (a) M and (b) NS coauthorship networks,
showing data based on the cumulative results up to years 1993 (×) and 1998 (•). (c)
Degree distribution shown with logarithmic binning computed from the full dataset
cumulative up to 1998. The lines correspond do the best fits, and have the slope
2.1 (NS, dotted) and 2.4 (M, dashed). (d) Average shortest path length in the M
and NS databases. 〈l〉 is computed on the cumulative data up to the indicated year.
The error bars indicate the standard deviation of the distances between all pairs
of nodes. (e) Clustering coefficient of the M and NS database, determined for the
cumulative data up to the year indicated on the t axis.

have two different origins. First, it is possible that indeed, shortest paths do shrink

as new internal links are added, i.e. papers written by authors that were previously

part of the database. They increase interconnectedness, thus decreasing the average

path length. Second, the decreasing path length could be a consequence of the fact

that we do not have access to the full database, but only starting from year 1991.

As we demonstrate in §3.4.2, such incomplete data sets could result in an apparently

decreasing average path length even if this length actually increases for the full sys-
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tem. The slow convergence indicates that an even longer time interval is perhaps

needed to reach the asymptotic limit, in which different relevant quantities take on

a stationary value. The smaller average path length for the NS field is expected,

since mathematicians tend to work in smaller groups and write papers with fewer

coauthors.

3.3.3 Clustering Coefficient Decays with Time

The clustering coefficient of a node in the coauthorship network tells us how much

a node’s collaborators are willing to collaborate with each other, and it represents

the probability that two of its collaborators wrote a paper together. The clustering

coefficient for the cumulative network as a function of time is shown in figure 3.2e.

The results, in agreement with average path-length measurements, suggest a

stronger interconnectedness for the NS compared with M, and a slow convergence

in time to an asymptotic value.

3.3.4 Relative Size of the Largest Cluster Increases

It is important to realize that the collaboration network is fragmented in many

clusters. There are several reasons for this. First, in every field there are scientists

who do not collaborate at all, that is they are the only authors of all papers on

which their name appears. This is more frequent in mathematics, which despite an

increasing tendency toward collaboration [87], is still more fragmented than physics

or neural science. Second, and most important, the database contains papers pub-

lished only after 1990. Thus there is a possibility that two authors coauthored a

paper before 1990, but in our database they appear as disconnected.

If we look only at a single year, we see many isolated clusters of authors. The

cumulative data-set containing several years develops a giant cluster that contains

a large fraction of the authors. To investigate the emergence of this giant connected
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component we measured the relative size of the largest cluster, r, giving the ratio

between the number of nodes in the largest cluster and the total number of nodes

in the system. A cluster is defined as a subset of nodes interconnected by links.

Results from our cumulative coauthorship networks are presented in figure 3.3a. As

expected, in M the fraction of clustered researchers is considerably smaller than in

NS.
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Figure 3.3. (a) Relative size of the largest cluster for the M and NS database. (b)
Average number of links per node, 〈k〉. Results are computed on the cumulative
data up to the given year.

The continuous increase in r may appear as the scenario commonly described as

percolation [36] or the much studied emergence of the giant component in random

networks [29, 32]. However, the process leading to this giant cluster is fundamentally

different from these much studied phenomena. In most research fields, apart from a

very small fraction of authors that do not collaborate, all authors belong to a single

giant cluster from the very early stages of the field. That is, the system is almost

fully connected from the very first moment. The only reason why the giant cluster

in our case grows so dramatically in the first several years is that we are missing

the information on the network topology before 1991. A good example is the actor

network, where the huge majority of the actors are part of the large cluster at any
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stage of the network, starting from early 1900’s until today. However, if we would

start recording collaborations only after 1990 for example, the data would indicate,

incorrectly, that many actors are disconnected. The increasing r indicates only the

fact that we are reconstructing the already existing giant cluster, and it is only a

partial measure of its emergence.

Finally, the fast convergence of the NS cluster size to an approximately stationary

value around 0.9 indicates that after 1994 the network reached a roughly stationary

topology, i.e. the basic alliances are uncovered. This does not seems to be the case

for M, where after ten years r still increases, perhaps due to smaller publication and

collaboration rate in the field.

3.3.5 Average Degree Increases

With time the number of nodes in our coauthorship network increases due to

arrival of new authors. The total number of links also increases through the con-

nections made by new authors with old ones and by new connections between old

authors. A quantity characterizing the network’s interconnectedness is the average

degree 〈k〉, giving the average number of links per author. The time dependence of

〈k〉 for the cumulative network is shown in figure 3.3b, indicating an approximately

linear increase of 〈k〉 with time. This is a rather important deviation from the ma-

jority of currently existing evolving network models, that assume a constant 〈k〉 as

the network expands. As expected, the average degree for M is much smaller than

for NS.

3.3.6 Node Selection is Governed by Preferential Attachment

The availability of dynamic data on the network development allows us to inves-

tigate the presence of preferential attachment in the coauthorship network at two

levels.
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• New nodes: For a new author who appears for the first time on a publication,

preferential attachment has a simple meaning: it is more likely that the first

paper will be coauthored with somebody that already has a large number

of coauthors (links) than with somebody less connected. As a result “old”

authors with more links will increase their number of coauthors at a higher

rate than those with fewer links. As figure 3.4a shows, we find that κ(k) (see

equation (2.17)) is nonlinear, increasing as κ(k) ∼ kν+1, where the best fit gives

ν ' 0.8 for M and ν ' 0.75 for NS. This implies that Π(k) ∼ kν , where ν is

different from 1 [21]. As simulations have shown, such nonlinear dependence

generates deviations from a power law P (k) [21]. This was supported by

analytical calculations [121, 120], demonstrating that the degree distribution

follows a power law only for ν = 1. The consequence of this nonlinearity will

be discussed in §3.4.

• Internal links: A large number of new links appear between old nodes as the

network evolves, representing papers written by authors that were part of the

network, but did not collaborate before. Such internal links are known to effect

both the topology and dynamics of the network [56]. These internal links are

also subject to preferential attachment. We studied the probability Π(k1, k2)

that an old author with k1 links forms a new link with another old author

with k2 links. The Π(k1, k2) probability map can be calculated by dividing

N(k1, k2), the number of new links between authors with k1 and k2 links, with

the D(k1, k2), number of pairs of nodes with degrees k1 and k2 present in the

system:

Π(k1, k2) =
N(k1, k2)

D(k1, k2)
. (3.1)

The three-dimensional plot of Π(k1, k2) is shown in figure 3.4b, the overall

behavior indicating preferential attachment: Π(k1, k2) increases as either k1 or
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Figure 3.4. (a) Cumulative preferential attachment of newly added nodes, κ(k).
In the absence of preferential attachment κ(k) ∼ k, shown as continuous line on
the figures. (b) Internal preferential attachment Π(k1, k2) shown on the 3D plots
(top); cumulative internal preferential attachment, κ(k1k2) as a function of the k1k2
product (bottom plots). The straight lines have slope 1, expected if there would be
no preferential attachment. All results were computed by considering the new nodes
coming in the specified year, and the network formed by nodes already present up
to this year.

k2’s increase.

A natural hypothesis is to assume that Π(k1, k2) factorizes into the product

k1k2. As figure 3.4b shows, we indeed find that

κ(k1k2) =

∫ k1k2

1

Π(k′1k
′
2) d(k

′
1k
′
2) (3.2)

can be well approximated with a slope 2 as a function of k1k2, indicating that

for internal links the preferential attachment is linear in the degree.
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3.4 Modelling the Web of Science

In this section we use the obtained numerical results to construct a simple model

for the evolution of the coauthorship network. It is important to emphasize that the

purpose of the model is to capture the main mechanisms that affect the evolution

of the network, and not to incorporate every numerical detail of the measured web.

We denote by ki(t) the number of links node i has at time t; by T (t) and N(t) the

total number of links and total number of nodes at time t, respectively. We assume

that all nodes present in the system are active, i.e. they can author further papers.

This is a reasonable assumption as the time span over which data is available to

us is shorter than the typical professional lifetime of a scientist. In agreement with

figure 3.1, we consider that new researchers join the field at a constant rate, leading

to

N(t) = βt. (3.3)

The average number of links per node in the system at time t is thus given by:

〈k〉 = T (t)

N(t)
. (3.4)

Figure 3.4b suggests, that the probability to create a new internal link between

two existing nodes is proportional to the product of their degrees. Consequently,

denoting by a the number of newly created internal links per node in unit time, we

write the probability that between node i and j a new internal link is created as

Πij =
kikj

∑′
s,m kskm

N(t) a, (3.5)

where the prime sign indicates that the summation is done for s 6= m values.

Measurements also indicate that new nodes link to the existing nodes with pref-

erential attachment (Fig. 3.4a), Π(k) following kν with ν ' 0.75 − 0.8. Aiming

to obtain an analytically solvable model, at this point we neglect this nonlinearity
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and we approximate Π(k) with a linear k dependence. The effect of the nonlinear-

ities will be discussed at the end of this section. Thus, if node i has ki links, the

probability that an incoming node will connect to it is given by

Πi = b
ki

∑

j kj
, (3.6)

where b is the average number of new links that an incoming node creates.

We have thus formulated the dynamical rules that govern our evolving network

model, capturing the basic mechanism governing the evolution of the coauthorship

network:

• Nodes join the network at a constant rate β.

• Incoming nodes link to the already present nodes following preferential attach-

ment (equation (3.6)).

• Nodes already present in the network form new internal links following pref-

erential attachment (equation (3.5)).

• We neglect the aging of nodes, and assume that all nodes and links present in

the system are active, able to initiate and receive new links.

In the model we assume that the number of authors on a paper is constant.

In reality m is a stochastic variable, as the number of authors varies from paper to

paper. However, for the scale free model the exponent γ is known to be independent

of m, thus making m a stochastic variable is not expected to change the scaling

behavior.

3.4.1 Continuum Theory

Taking into account that new links join the system with a constant rate, β,

the continuum equation for the evolution of the number of links node i has can be
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written as:

dki
dt

=
bβki
∑

j kj
+N(t) a

∑

j

′ kikj
∑′

s,m kskm
. (3.7)

The first term on the right hand side describes the contribution due to new nodes

(equation (3.6)) and the second term gives the new links created with already ex-

isting nodes (equation (3.5)). The total number of links at time t can be computed

taking into account the internal and external preferential attachment rules:

∑

i

ki = T (t) =

∫ t

0

2 [N(t′)a+ bβ] dt′ = tβ(at+ 2b). (3.8)

Consequently the average number of links per node increases linearly in time,

〈k〉 = at+ 2b, (3.9)

in agreement with our measurements on the collaboration network (Fig. 3.3b). The

master equation (3.7) can be solved if we approximate the double sum in the second

term. Taking into account that we are interested in the asymptotic limit where the

total number of nodes is large relative to the connectivity of the nodes, we can write:

′
∑

s,m

kskm =
∑

s

ks
∑

m

km −
∑

m

k2m ≈
(

∑

i

ki

)2

. (3.10)

We have used here the fact that T (t)2 depends on N 2, while
∑

i k
2
i depends only

linearly on N (we investigate the N → ∞ limit). Using (3.10) equation (3.7) now

becomes:

dki
dt

=
bki

t(at+ 2b)
+

kia

at+ 2b
. (3.11)

Introducing the notation α = a/b, we obtain:

dki
dt

=
ki
t

tα+ 1

tα+ 2
. (3.12)

This differential equation is separable, the general solution having the form

ki(t) = Ci

√
t
√
2 + αt. (3.13)
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The Ci integration constant can be determined from the initial conditions for node

i. Since node i joins the system at time ti, we have ki(ti) = b, leading to

ki(t) = b

√

t

ti

√

2 + αt

2 + αti
. (3.14)

This implies that for large times (t→∞) the connectivity of the node scales linearly

with time, i.e. k(t) ∼ t (Fig. 3.3b).

A quantity of major interest is the degree distribution, P (k). The nodes join the

system randomly at a constant rate, which implies that the ti values are uniformly

distributed in time between 0 and t. The distribution function for the ti in the

[0, t] interval is simply ρ(t) = 1/t. P (k) can be obtained in a similar manner to the

calculation in §2.2.2 (equation (2.8) to (2.13) after determining the ti(ki) dependence

from equation (3.14):

P (k) = −ρ(t) dti
dki

∣

∣

∣

∣

k

= (3.15)

= b2(2/α + t)
1

k2
1

√

k2 + b2t(2 + αt)
. (3.16)

An immediate consequence of this result is that the connectivity distribution de-

pends both on the observation time t and on the range of k values we explore. In

the asymptotic limit t→∞ we obtain

P (k) ∝ 1

k2
, (3.17)

predicting a scale free behavior with exponent γ = 2. At short times, however,

the exponent is different, the network exhibiting a scale free behavior similar to the

scale free model [20, 21]:

P (k) ∝ 1

k3
. (3.18)

Thus the model predicts that the degree distribution of the collaboration network

displays a crossover between two scaling regimes. In general, scaling is controlled
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by the time dependent crossover connectivity, given by

kc =
√

b2t(2 + αt). (3.19)

For k ¿ kc the degree distribution scales with an exponent γ = 2, while for k À kc

the degree distribution scales with γ = 3. The crossover connectivity, kc, increases

linearly in time for t À 2/α, which implies that in the asymptotic limit (t → ∞)

only the γ = 2 exponent is observable.

Note that this result predicts that the degree distribution has two scaling regimes,

one with γ = 2 for small k, followed by a crossover to γ = 3 for large k. This

crossover towards a larger exponent can be easily approximated with an exponential

cutoff, which is why we believe that in [149] the power law with an exponential cutoff

gave a reasonable fit. However, as [147, 148] and our results show, for data sets with

better statistics the scaling regimes can be distinguished. Indeed, the crossover is

visible in figure 3.2a,b as well, in particular for the degree distribution of NS. The

degree distribution taken in 1993 has a clear γ = 3 tail, as for the studied short

time frame (3 years) kc is expected to be low. This γ = 3 tail all but disappears,

however, in 1998, being replaced with a γ = 2 exponent, as predicted by equation

(3.17) for the limit t→∞. The M database shows similar characteristics, albeit the

crossover is masked by a higher spread in the data point due to weaker statistics.

Plotting two differently cumulated values instead of P (k) the γ = 2 and γ = 3

scaling regimes become more evident. Let us denote by F (k) the primitive function

of P (k), defining:

Φ(k) = 1−
∫ k

1

P (k′) dk′. (3.20)

Φ(k) can be determined numerically by integrating P (k) between 1 and k. For small

k the function Φ(k) should scale as

Φ(k) ∝ k−1, (3.21)
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assuming that P (k) scales as given by equation (3.17). As figure 3.5a shows, we

indeed find that for large t (1998) the measured Φ(k) function converges to a k−1

behavior, which is less apparent on the small t curves (1993 and 1995).

To investigate the large k behavior of P (k) we measured the τ(k) function defined

as:

τ(k) =

∫ ∞

k

P (k′) dk′, (3.22)

which captures the scaling of the tail. According to equation (3.17) for large k and

small t one should observe

τ(k) ∝ k−2. (3.23)

As figure 3.5 shows, we indeed find that for NS for small t (1993) the large k scaling

follows the prediction (3.22), and, as predicted, the scaling increasingly deviates

from it as time increases.
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Figure 3.5. Scaling of Φ(k) (a) and of τ(k) (b) for the NS database, demonstrating
the trends in the small and large k behavior of the degree distribution.

3.4.2 Monte Carlo Simulations

While the continuum theory predicts the connectivity distribution in agreement

with the empirical data, there are other quantities, such as the average path length
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and clustering coefficient, that cannot be calculated using this method at this point.

To investigate the behavior of these measures of the network topology next we study

the proposed model using Monte Carlo simulations.

Due to memory and computing time limitations we investigated relatively small

networks, with total number of nodes N < 4000. While these networks are consid-

erably smaller than the real networks, their scaling and topological features should

be representative. In order to form a reasonable number of internal links, we

increased the parameter a in equation (3.5). For comparison purposes we note

that in the real system we have aM = 0.31/year ' 10−4/simulation step and

aNS = 0.98/year ' 3.684 · 10−5/simulation step,1 numbers that can be derived from

the data shown in figure 3.3b and figure 3.1b.

The advantage of the modelling efforts, including the Monte Carlo simulations,

is that they reproduce the network dynamics from the very first node. In contrast,

the database we studied records nodes and links only after 1991, when much of the

networks structure was already in place. By collecting data over several years we

gradually discovered the underlying structure. We expect that after a quite long

measurement time the structure revealed by the collected data will be statistically

indistinguishable from the full collaboration network. However, the dynamics we

measure during this process for the relevant quantities (average path length, average

connectivity, clustering coefficient) might differ from those characterizing the full

network, since all of them are computed on the incomplete network (revealed by the

available data). However, Monte Carlo simulations allow us to investigate the effect

of the data incompleteness on the relevant network measures.

We investigated the time dependence of the average connectivity, the average

path length and the clustering coefficient, using the parameters Nmax = 1000, a =

1One simulation step corresponds to the addition of one new author connecting b links to the
system.
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0.001, β = 1 and b = 2. In order to improve statistics, the results were averaged

over 10 independent configurations.

Average degree: As figure 3.6a indicates, asymptotically the average connectivity

increases linearly, in agreement with both our measurements (see Fig. 3.6b) and the

continuum theory (see equation (3.9)).
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Figure 3.6. Computer simulated dynamics for Nmax = 1000, a = 0.001, β = 1 and
b = 2. (a) Average connectivity. (b) Real and apparently measured average path
length (Ns = 200). (c) Clustering coefficient for different values of the a parameter
as a function of the system size N (values of a are 0 (•), 0.00025 (+), 0.0005 (4),
0.00075 (∗) and 0.002 (5)). The inset shows the scaling of the minimum value of
C as a function of a, the line shows a fit lnNmin = −(1.9 + 1.14 · ln a).

Average path length: The empirical results indicated (see Fig. 3.2c) that the

average path length decreases with time for both databases. In contrast, our simu-

lations show a monotonically increasing d, in apparent disagreement with the real

system.

Note that an increasing average path length agrees with measurements done

on other models, including scale free and exponential networks, all predicting an

approximately logarithmic increase with the number of nodes, d ∼ ln(N) [13, 29].

This contradiction between the models and our empirical data is rooted in the

incomplete data we have for the first years of our measurements. To show this

we perform the following simulation. We construct a network of N = 1000 nodes,
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however, we will record the apparent average path length of the network made of

nodes that have been added only after a predefined time: we try to mimic the fact

that the data available for us gives d only for publications after 1991. We find that

the average path length of this incomplete network has a decreasing tendency, slowly

converging to the real value (Fig. 3.6b), in agreement with the decrease observed

in the empirical measurements (Fig. 3.2e). This result underlies the importance of

simulations in understanding the dynamics of complex networks, and resolves the

conflict between the simulation and the empirical data. It also indicates that most

likely the average path length of the M and NS database does increase in time, but

such increase can be observed only if much longer time intervals will be available

for study.

Clustering coefficient. The clustering coefficient predicted by our simulations is

shown in figure 3.6c. C depends strongly on the value of the parameter a. For

a = 0 we have essentially the BA model [20] and the clustering coefficient decreases

monotonically. For a > 0 however, the clustering coefficient decreases at the begin-

ning, but after reaching a minimum at Nmin it changes its trend, now increasing in

time. Thus we expect that for all a > 0 the clustering coefficient should increase

in the asymptotic limit, in agreement with our measurements on the collaboration

network (see Fig. 3.2d). The Nmin position where the clustering coefficient has a

minimum scales as power of the a parameter, as shown as the inset in figure 3.6c.

We conclude that the decreasing C observed for our database, shown in fig-

ure 3.2d, does not represent the asymptotic behavior. The observed behavior also

indicates that one should view the values for C reported in the literature, and mea-

sured for finite time-frames (maximum 5 years) with caution, as they might not

represent asymptotic values.

Degree distribution: The simulations provide P (k) as well, allowing us to check

51



the validity of the predictions of the continuum theory. Although the considered

system sizes are rather small (Nmax = 3500) compared to theN →∞ approximation

used in the analytical calculation and the NM = 70, 975, NNS = 209, 750 for the

empirical data, the behavior of P (k), shown in figure 3.7 agrees with our continuum

model and measurements. For small k we observe the γ = 2 scaling, while for large

k P (k) converges to the predicted γ = 3 exponent.
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Figure 3.7. Connectivity distributions as predicted by numerical simulation for
different stages of evolution of the network (a = 0.001, β = 1 and b = 2).

3.4.3 Nonlinear Effects

An issue that remained unresolved up to this point concerns the effect of the

nonlinear preferential attachment. We have seen in §3.3.6 that the incoming links

follow

Πi = b
kν
i

∑

j k
ν
j

, (3.24)

with ν ≈ 0.8. On the other hand, for such preferential attachment Krapivsky

et al. have shown that the degree distribution follows a stretched exponential;
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i.e., the power law is absent [121, 120]. This would indicate that P (k) for the

coauthorship network should follow a stretched exponential, which disagrees with

our and Newman’s findings (we have explicitly checked that a stretched exponential

is not a good fit for our data). What could then override the known effect of the

ν < 1 nonlinear behavior? Next we propose a possible explanation: the linearity of

the internal preferential attachment can restore the power law nature of P (k).

To test the potential effect of the nonlinearities in the preferential attachment

of newly added nodes, we have simulated the model with ν = 0.75, otherwise all

parameters being unchanged. We show on figure 3.8 the degree distribution for the

linear (ν = 1) and the nonlinear (ν = 0.75) case. As one can see, the ν = 1 and
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Figure 3.8. Connectivity distribution generated by the numerical simulations for
linear (ν = 1) and nonlinear (ν = 0.75) preferential attachment (Nmax = 3500,
a = 0.0005, β = 1 and b = 2).

ν = 0.75 case can be hardly distinguished. This could have two origins. First, the

simulations are limited to t = 3500 simulation steps, due to the discussed running

time limitations. Thus we are hardly in the asymptotic regime. On the other hand,

the agreement indicates that the nonlinearity has a barely distinguishable effect on
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P (k), with the internal attachment dominating the system behavior.

In summary, the domination of the internal attachment affects are expected to

be even more dominant for the real network. Indeed, in the collaboration network

the fraction of the links created as internal links is much higher than those created

by the incoming nodes, as an author qualifies for a new incoming link only on his

first paper. Most scientists contribute for a considerable time to the same field,

publishing numerous subsequent papers, and these later links will all appear as

internal links. Thus typically the number of internal links is much higher than

the number of new links, making the network’s topology much more driven by the

internal links than by the external ones. This is one possible reason why the effect

of the nonlinear behavior, while clearly present, cannot be detected in the functional

form of P (k).

3.5 Discussion

In the past few years we have witnessed considerable advances in addressing the

topology and dynamics of complex networks. Along this road a number of quantities

have been measured and calculated, aiming to characterize the network topology.

However most of these studies are fragmented, focusing on one or a few characteris-

tics of the network at a time. Here, we have presented a detailed study of a network

of high interest to the scientific community: the collaboration network of scientists,

which also represents a prototypical example of a complex evolving network. This

study allows us to investigate to what degree can we use various known measures

to characterize a given network. An important result of our investigation is the

understanding that we need to be careful in distinguishing between the asymptotic

and the intermediate behavior. In particular, most quantities used to characterize

the network are time dependent. For example, the average path length, the clus-
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tering coefficient, as well as the average degree of the nodes are often used as basic

time independent network characteristics. Our empirical results show that many of

these key quantities are time dependent, without a tendency to saturate within the

available time-frame. Thus their value at a given moment tells us little about the

network. They can be used, however, at any moment, to show that the network

has small world properties, i.e. it has a small average path length, and a clustering

coefficient that is larger than one expected for a random network.

A quantity that is often believed to offer a stationary measure of the network is

the degree distribution. Our empirical data, together with the analytic solution of

the model shows that this is true only asymptotically for the coauthorship network:

we uncover a crossover behavior between two different scaling regimes. We tend to

believe that the model’s predictions are not limited to the collaboration network: as

on the WWW and for the actor collaboration network similar basic processes take

place, chances are that similar crossovers could appear there as well.

A third important conclusion of the study regards the understanding that the

measurements done on incomplete databases could offer trends that are opposite

compared to that seen in the full system. An example is the average path length:

we find that the empirically observed decreasing tendency is an artifact of the in-

complete data. However, our simulations show that one can, with careful modelling,

uncover such inconsistencies. But this also offers an important warning: for any net-

work, before attempting to model it, we need to fully understand the limitations of

the data-collection process, and test their effect on the quantities of interest for us.

In summary, the modelling efforts presented here are only the starting point

for a systematic investigation of the evolution of social networks. It is important

to note that such modelling is open ended: more details can be incorporated that

could undoubtedly improve the agreement between the empirical data and theory.
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CHAPTER 4

HIERARCHY IN NETWORKS

Many real networks are expected to be fundamentally modular, meaning that the

network can be seamlessly partitioned into a collection of modules. Each module

is expected to perform an identifiable task, separate from the function of other

modules [89, 215, 125, 188]. On the other hand, most networks have a scale free

connectivity distribution, a topology in which a hierarchy of hubs of all sizes links

all parts of the network into a highly integrated web, making separable grouping

of nodes apparently difficult. Therefore, there must be a way to reconcile the scale

free property with the network’s potential modularity. This dilemma was central to

the community trying to understand the architecture of cellular networks. On our

journey towards an answer, hierarchical network architecture has first served us as an

intuitive principle that helped us construct deterministic scale free networks. Soon,

however, it lead us to the conclusion that a large variety of real networks have an

underlying hierarchical structure. After a short presentation of two deterministic

scale free models only aimed to offer deterministic scale free graphs [24, 53], we

present our hierarchical model in detail [174, 173, 23], followed by a comparison of

some of its properties to real-world networks.

4.1 Deterministic scale free Models

The high interest in understanding the topology of complex networks has

resulted in the development of a considerable number of network models [20,
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21, 55, 54, 56, 59, 120, 121, 122, 27, 28]. Most of these are based on incremental

growth and preferential attachment [20, 21], and stochasticity was a common fea-

ture of all network models that generate scale free topologies. That is, new nodes

connect to nodes already present in the system using a probabilistic rule. This ran-

domness present in the models, while in line with the major features of networks

seen in nature, made it harder to gain a visual understanding of what makes them

scale free, and how different nodes relate to each other. It was therefore of major

theoretical interest to construct models that lead to scale free networks in a deter-

ministic fashion. Here we present our first simple model, generating a deterministic

scale free network using a hierarchical construction [24].

4.1.1 Description of the Model

The construction of the model follows a hierarchical rule commonly used in

deterministic fractals [132, 202], as shown in figure 4.1. The network is built in an

iterative fashion, each iteration repeating and reusing the elements generated in the

previous steps as follows:

• Step 0: We start from a single node, the root of the graph.

• Step 1: We add two more nodes, and connect each of them to the root.

• Step 2: We add two units of three nodes, each unit identical to the network

created in Step 1, and we connect each of the bottom nodes of these two units

to the root.

• Step 3: We add two units of nine nodes each, identical to the units generated

in the previous iteration, and connect all eight bottom nodes of the two new

units to the root.
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n=3

n=2

n=1

n=0

Figure 4.1. Construction of the deterministic scale free network.

These rules can be easily generalized. Indeed, step n would involve the follow-

ing operation:

• Step n: Add two units of 3n−1 nodes each, identical to the network created in

the previous iteration (step n− 1), and connect each of the 2n bottom nodes

of these two units to the root of the network.

Thanks to its deterministic and discrete nature, the degree distribution of this

model can be calculated exactly.

The tail of the degree distribution is determined by the most connected nodes,

or hubs. Clearly the biggest hub is the root, and the next two hubs are the roots of

the two units added to the network in the last step. Therefore, in order to capture

the tail of the distribution, it is sufficient to focus on the hubs.

In step i the degree of the most connected hub, the root, is 2i+1 − 2. In the

next iteration two copies of this hub will appear in the two newly added units. As
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we iterate further, in the nth step 3n−i copies of this hub will be present in the

network. However, the two newly created copies will not increase their degree after

further iterations. Therefore, after n iterations there are (2/3)3n−i nodes with degree

2i+1− 2. Since spaces between degrees the nodes grow with increasing k values, the

exponent of the degree distribution can be properly calculated using the cumulative

degree distribution. The tail of the cumulative degree distribution, determined by

the hubs, follows

Pcum(k) ∼ k1−γ ∼ k−
ln 3

ln 2 . (4.1)

Thus the degree exponent is

γ = 1 +
ln 3

ln 2
. (4.2)

The origin of this scaling behavior can be understood by inspecting the model’s

construction. Indeed, at any moment we have a hierarchy of hubs, highly connected

nodes which are a common component of scale free networks. The root is always

the largest hub. However, at any step there are two hubs whose connectivity is

roughly a half of the root’s connectivity, corresponding to the roots of the two units

added at step n − 1. There are six even smaller hubs, with connectivity 2n−1 − 2,

corresponding to the root of the units added at time n−2, and so on. This hierarchy

of hubs is responsible for the network’s scale free topology. As the number of hubs

increases as powers of 3, while the number of links only as powers of two, the degree

exponent is expected to be 1 plus a simple multiple of ln 3/ ln 2.

The model introduced above offers a deterministic construction of a scale free

network, with the interesting property of self similarity.

The proposed model generates a network with a fixed γ = 1 + ln 3/ ln 2 degree

exponent. However, one can easily modify the model to change the scaling exponent

by varying the number of links connected to the root at each step. Similarly, by

definition the model discussed here has a zero clustering coefficient [147, 147], as
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it does not generate triangles of connected nodes. It is easy to change the rules,

without changing the scaling exponent, to obtain a network that displays nonzero

clustering, as we can see in the next section.

4.1.2 The Pseudofractal Graph

Dorogovtsev, Goltsev and Mendes constructed a deterministic scale free network

which deserves our attention due to the clustering properties of its nodes.

The model network is grown as follows (see Fig. 4.1):

• Time -1: The growth starts
from a single edge linking two
nodes.

• Time 0: A new vertex is at-
tached to both end vertices of
the previous edge.

...

• Time t: At each time step a
new vertex is attached to both
ends of every edge of the graph
(new vertices and edges are
drawn with red on figure 4.1). Figure 4.2. Construction of the pseud-

ofractal network. (After [53])

The total number of vertices at time t is Nt = 3(3t+1)/2, and the total number

of edges is L = 3t + 1, leading to an average degree <k>= 4/(1 + 3−t).

Degree distribution. At time t, the number nt(k) of vertices of degree k =

2, 22, . . . , 2t−1, 2t is equal to 3t, 3t−1, . . . , 32, 3, respectively, while other degree values

are absent. Calculating the cumulative distribution leads to a power law degree

distribution with degree exponent γ = 1 + ln 3/ ln 2.

Distribution of clustering. Usually only the average value of the clustering co-

efficient is considered. However, in this graph there is a one-to-one correspondence
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between the clustering coefficient of a vertex and its degree:

C = 2/k. (4.3)

In the next section we show that the scaling of the clustering coefficient of the

vertices with their degrees is a signature of an underlying hierarchical architecture.

4.2 The Hierarchical Model

We have seen earlier that the scale free property and clustering are not exclusive:

for a large number of real networks, including metabolic networks [101, 206], the

protein interaction network [98, 205], the world wide web [13] and even some social

networks [149, 147, 148, 22] the scale free topology and high clustering coexist.

Most models proposed to describe the topology of complex networks have difficulty

capturing these two features simultaneously. Here we show that the fundamental

discrepancy between models and empirical measurements is rooted in a previously

disregarded, yet generic feature of many real networks: their hierarchical topology.

Indeed, many networks are fundamentally modular: one can easily identify groups

of nodes that are highly interconnected with each other, but have only a few or no

links to nodes outside of the group to which they belong to. In society such modules

represent groups of friends or coworkers [86]; in the WWW denote communities with

shared interests [76, 5]; in the actor network they characterize specific genres or

simply individual movies. Some groups are small and tightly linked, others are larger

and somewhat less interconnected. This clearly identifiable modular organization

is at the origin of the high clustering coefficient seen in many real networks. Yet,

most models reproducing the scale free property of real networks [12, 58] distinguish

nodes based only on their degree, and are blind to node characteristics that could

lead to a modular topology.
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In order to bring modularity, the high degree of clustering and the scale free

topology under a single roof, we need to assume that modules combine into each

other in a hierarchical manner, generating what we call a hierarchical network. The

presence of a hierarchy and the scale free property impose strict restrictions on the

number and the degree of cohesiveness of the different groups present in a network,

which can be captured in a quantitative manner using a scaling law, describing the

dependence of the clustering coefficient on the node degree. We use this scaling law

to identify the presence of a hierarchical architecture in several real networks, and

the absence of such hierarchy in geographically organized webs.

4.2.1 Construction of the Model

Our starting point is a small cluster of five densely linked nodes (Fig. 4.3a). Next

we generate four replicas of this hypothetical module and connect the four external

nodes of the replicated clusters to the central node of the old cluster, obtaining a

large 25-node module (Fig. 4.3b). Subsequently, we again generate four replicas of

this 25-node module, and connect the 16 peripheral nodes to the central node of the

old module (Fig. 4.3c), obtaining a new module of 125 nodes. These replication and

connection steps can be repeated indefinitely, in each step increasing the number of

nodes in the system by a factor five.

As mentioned in the previous section, precursors to this model have been pro-

posed in Ref. [24] and extended and discussed in Ref. [53, 104] as a method of gen-

erating deterministic scale free networks. Yet, it was believed that aside from their

deterministic structure, their statistical properties are equivalent with the stochas-

tic models that are often used to generate scale free networks. In the following we

argue that such hierarchical construction generates an architecture that is signifi-

cantly different from the networks generated by traditional scale free models. Most
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(a) n=0, N=5

(b) n=1, N=25 (c) n=2, N=125

Figure 4.3. The iterative construction leading to a hierarchical network. Starting
from a connected cluster of five nodes shown in (a) we create four identical replicas,
connecting the peripheral nodes of each cluster to the central node of the original
cluster, obtaining a network of N = 25 nodes (b). In the next step we create four
replicas of the obtained cluster, and connect the peripheral nodes again, as shown in
(c), to the central node of the original module, obtaining a N = 125 node network.
This process can be continued indefinitely.

important, we show that the new feature of the model, its hierarchical character,

are shared by a significant number of real networks.

4.2.2 Properties of the Hierarchical Model

To analyze the scaling behavior of the degree distribution and clustering coef-

ficient of this hierarchical network we first need to count the nodes with different

degrees, then calculate their clustering coefficients. Starting with the first five nodes,

we label the middle one a hub and we call the remaining four peripheral. All nodes

that originate as copies of hubs are again called hubs, and we will continue call-

ing copies of peripheral nodes peripheral. This distinction is useful since the rules
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responsible for connecting these classes of nodes are somewhat different.

The central hub acquires 4n links during the nth iteration. Let us call the central

hub Hn, the four copies of this hub Hn−1. The 4 · 5 leftover module centers with

sizes equal to the size of the network at the n−2th iteration are called Hn−2. At the

nth iteration a hub Hi has all the links the central hub had after the ith iteration:

kn(Hi) =
i
∑

l=1

4l =
4

3
(4i − 1). (4.4)

For any i < n the number of Hi modules:

Nn(Hi) = 4 · 5n−1−i (4.5)

(there are four for i = n−1, 4·5 for i = n−2, . . ., for i = 1 we have 4·5n−2, or 4/5-th

of the copies of the original five-node module). Since we have 4 ·5n−1−i Hi-type hubs

of connectivity kn(Hi), we obtain lnNn = cn − i ln 5 and ln kn ' i ln 4 + ln(4/3).

Let us now focus on the peripheral nodes. The largest possible connectivity

of a peripheral node equals the number of iterations plus 2. These are the nodes

at the “edge” of the drawn graph, the ones created in the last iteration and they

are connected to one hub of each size (plus two other peripheral nodes in their

small square). Thus peripheral nodes do not contribute to the tail of the degree

distribution, they only influence the very small k range.

Thus for all k > n + 2 we have lnNn = cn − kn
ln 5
ln 4

. The k values contributing

to the graph’s degree distribution are not continuous (Fig. 4.4a): the gap between

consecutive values grows as a power law. Thus the degree distribution function is a

power law

P (k) ∼ k−γ , where γ = 1 +
ln 5

ln 4
. (4.6)

The clustering coefficient of the Hi hubs is easy to calculate. Their
∑i

l=1 4
l links

come from nodes linked in a square, thus the number of connections between them
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is equal to their number. Thus the number of links between the Hi hub’s neighbors

is
∑i

l=1 4
l = kn(Hi). This leads to

Cn(Hi) =
ki

ki (ki − 1)/2
=

2

ki − 1
, (4.7)

indicating that the C(k) function scales as k−1 (Fig. 4.4b) [53].

The average clustering coefficient of the hierarchical model asymptotically ap-

proaches 0.743, the correction to this asymptotic value decreases as a power law

with the system size (Fig. 4.4c).
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Figure 4.4. Scaling properties of the hierarchical model (N = 57). (a) The
numerically determined degree distribution. The asymptotic scaling, with slope
γ − 1 = ln 5/ ln 4, is shown as a dashed line. (b) The C(k) curve for the model,
demonstrating that it follows equation (4.8). The open circles show C(k) for a scale
free model [20] of the same size, illustrating that it does not have a hierarchical
architecture. (c) The dependence of the clustering coefficient, C, on the size of the
network N . While for the hierarchical model C is independent of N (¨), for the
scale free model C(N) decreases rapidly (©).

4.2.3 Signature of Hierarchy

The most important feature of the network model of figure 4.3, not shared by

either the scale free [20, 21] or random network models [64, 29], is its hierarchical

architecture. The network is made of numerous small, highly integrated five-node

modules (Fig. 4.3a), which are assembled into larger 25-node modules (Fig. 4.3b).
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These 25-node modules are less integrated but each of them is clearly separated from

the other 25-node modules when we combine them into the even larger 125-node

modules (Fig. 4.3c). These 125-node modules are even less cohesive, but again will

appear separable from their replicas if the network expands further.

This intrinsic hierarchy can be characterized in a quantitative manner using the

finding of Dorogovtsev, Goltsev and Mendes [53] (See §4.1.2) that in their deter-

ministic scale free network the clustering coefficient of a node with k links follows

the scaling law

C(k) ∼ k−1. (4.8)

We argue that this scaling law quantifies the coexistence of a hierarchy of nodes

with different degrees of clustering, and applies to the model of figure 4.3a–c as well.

Indeed, the nodes at the center of the numerous 5-node modules have a clustering

coefficient C = 2/3. Those at the center of a 25-node module have k = 20 and

C = 2/19, while those at the center of the 125-node modules have k = 80 and

C = 2/79, indicating that the higher a node’s degree the smaller is its clustering

coefficient, asymptotically following the 1/k law (Fig. 4.4b). In contrast, for the

scale free model proposed in Ref. [20] the clustering coefficient is independent of

k, i.e. the scaling law (4.8) does not apply (Fig. 4.4b). The same is true for the

random [64, 29] or the various small world models [211, 145], for which the clustering

coefficient is independent of the nodes’ degree.

Therefore, the discrete model of figure 4.3 combines the two key properties of real

networks within a single framework: their scale free topology and high modularity,

which results in a system-size independent clustering coefficient. Yet, the hierarchi-

cal modularity of the model results in the scaling law (4.8), which is not shared by

the traditional network models. The question is, could hierarchical modularity, as

captured by this model, characterize real networks as well?
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4.3 Hierarchy in Real Networks

To investigate if such hierarchical organization is present in real networks we

measured the C(k) function for several networks for which large topological maps

are available. Next we discuss each of these systems separately.

Actor Network: The www.IMDB.com-based Hollywood actor network mentioned

in §1.3.1 consists of 392,340 nodes and 15,345,957 links [20, 11, 16]. As figure 4.5a

indicates, we find that the high-k range of C(k) scales as k−1, indicating that the

network has a hierarchical topology. Indeed, the majority of actors with a few links

(small k) appear only in one movie. Each such actor has a clustering coefficient

equal to one, as all actors the actor has links to are part of the same cast, and are

therefore connected to each other. The high k nodes include many actors that acted

in several movies, and thus their neighbors are not necessarily linked to each other,

resulting in a smaller C(k). At high k the C(k) curve splits into two branches, one of

which continues to follow equation (4.8), while the other saturates. One explanation

of this split is the decreasing amount of data-points available in this region. Indeed,

in the high k region the number of nodes having the same k is rather small. If one of

these nodes corresponds to an actor that played only in a few movies with hundreds

in the cast, it will have both high k and high C, considerably increasing the average

value of C(k). The k values for which such a high C nodes are absent continue to

follow the k−1 curve, resulting in jumps between the high and small C values for

large k. For small k these anomalies are averaged out.

Language network: Here we study the network generated connecting two words

to each other if they appear as synonyms in the Merriam-Webster dictionary [221]

(See §1.3.3). The obtained semantic web has 182,853 nodes and 317,658 links and

it is scale free with degree exponent γ = 3.25. The C(k) curve for this language

network is shown in figure 4.5b, indicating that it follows equation (4.8), suggesting
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that the language has a hierarchical organization.

World Wide Web: The sample of the WWW we study, obtained by mapping out

the www.nd.edu domain [13], has 325,729 nodes and 1,497,135 links, and it is scale

free with degree exponents γout = 2.45 and γin = 2.1, characterizing the out and in-

degree distribution, respectively (See §1.3.3). To measure the C(k) curve we made

the network undirected. While the obtained C(k), shown in figure 4.5c, does not

follow as closely the scaling law (4.8) as observed in the previous two examples, there

is clear evidence that C(k) decreases rapidly with k, supporting the coexistence of

many highly interconnected small nodes with a few larger nodes, which have a much

lower clustering coefficient.1

Indeed, the Web is full of groups of documents that all link to each other. For

example, www.nd.edu/∼networks, our network research dedicated site, has a high

clustering coefficient, as the documents it links to have links to each other. The site

is one of the several network-oriented sites, some of which point to each other. There-

fore, the network research community still forms a relatively cohesive group, albeit

less interconnected than the www.nd.edu/∼networks site, thus having a smaller C.

This network community is nested into the much larger community of documents

devoted to statistical mechanics, that has an even smaller clustering coefficient.

Therefore, the k-dependent C(k) reflects the hierarchical nesting of the different

interest groups present on the Web.

Internet at the AS level: As figure 4.5d shows, we find that at the domain level

(see §1.3.2) the Internet [2] has a hierarchical topology as C(k) is well approximated

with equation (4.8). The scaling of the clustering coefficient with k for the Internet

was earlier noted by Vázquez, Pastor-Satorras and Vespignani (VPSV) [200, 200],

who observed C(k) ∼ k−0.75. VPSV interpreted this finding, together with the

1Note that C(k) ∼ k−1 for the WWW was observed and briefly noted in Ref. [61].
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observation that the average nearest-neighbor connectivity also follows a power law

with the node’s degree, as a natural consequence of the stub and transit domains,

that partition the network in a hierarchical fashion into international connections,

national backbones, regional networks and local area networks.
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Figure 4.5. The scaling of C(k) with k for four large networks: (a) Actor net-
work, two actors being connected if they acted in the same movie according to the
www.IMDB.com database. (b) The semantic web, connecting two English words if
they are listed as synonyms in the Merriam Webster dictionary [221]. (c) The World
Wide Web, based on the data collected in Ref. [13]. (d) Internet at the Autonomous
System level, each node representing a domain, connected if there is a communi-
cation link between them. The dashed line in each figure has slope −1, following
equation (4.8).

Our measurements indicate, however, that some real networks lack a hierarchical

architecture, and do not obey the scaling law (4.8). In particular, we find that the

power grid and the router level Internet topology have a k independent C(k).

Internet at the router level: The router level Internet has 260,657 nodes con-
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nected by 1,338,100 links [85] (see §1.3.2) . Measurements indicate that the network

is scale free [69, 222] with degree exponent γ = 2.23. Yet, the C(k) curve (Fig. 4.6a),

apart from some fluctuations, is largely independent of k, in strong contrast with

the C(k) observed for the Internet’s domain level topology (Fig. 4.5d), and in agree-

ment with the results of VPSV [200, 201], who also note the absence of a hierarchy

in router level maps.

Power Grid: The network studied by us represents the map of the Western

United States, and has 4,941 nodes and 13,188 links [211] (see §1.3.2). The results

again indicate that apart from fluctuations, C(k) is independent of k.
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Figure 4.6. The behavior of C(k) for two large, non-hierarchical networks: (a)
Internet at router level [85]. (b) The power grid of Western United States. The
dashed line in each figure has slope −1, while the solid line corresponds to the
average clustering coefficient.

It is quite remarkable that these two networks share a common feature: a geo-

graphic organization. The routers of the Internet and the nodes of the power grid

have a well defined spatial location, and the link between them represent physical

links. In contrast, for the examples discussed in figure 4.5 the physical location of the

nodes was either undefined or irrelevant, and the length of the link was not of major

importance. For the router level Internet and the power grid the further are two

nodes from each other, the more expensive it is to connect them [222]. Therefore,
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in both systems the links are driven by cost considerations, generating a distance

driven structure, apparently excluding the emergence of a hierarchical topology. In

contrast, the domain level Internet is less distance driven, as many domains, such

as the AT&T domain, span the whole United States.

In summary, we offered evidence that for four large networks C(k) is well ap-

proximated by C(k) ∼ k−1, in contrast to the k-independent C(k) predicted by both

the scale free and random networks. In addition, there is evidence for similar scaling

in the metabolism [174] (see next Chapter) and protein interaction networks [223].

This indicates that these networks have an inherently hierarchical organization. In

contrast, hierarchy is absent in networks with strong geographical constraints, as

the limitation on the link length strongly constraints the network topology.

4.4 Stochastic Model and Universality

The hierarchical model described in figure 4.3 predicts C(k) ∼ k−1, which offers

a rather good fit to three of the four C(k) curves shown in figure 4.5. The question

is, is this scaling law (4.8) universal, valid for all hierarchical networks, or could

different scaling exponent characterize C(k)? Defining the hierarchical exponent, β,

as

C(k) ∼ k−β, (4.9)

is β = 1 a universal exponent, or can its value be changed together with γ? In the

following we demonstrate that the hierarchical exponent β can be tuned as we tune

some of the network parameters. For this we propose a stochastic version of the

model.

We start again with a small core of five nodes all connected to each other

(Fig. 4.7a) and in step one (n = 1) we make four copies of the five-node module.

Next, we randomly pick a fraction p of the newly added nodes and connect each of
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(a) n=0, N=5

(b) n=1, N=25 (c) n=2, N=125

Figure 4.7. Iterative construction of the stochastic hierarchical network (p = 3/5).

them independently to the nodes belonging to the central module (Fig. 4.7b). We

use preferential attachment [20, 21] to decide to which central node the selected

nodes link to. (That is, we assume that the probability that a selected node will

connect to a node i of the central module is ki/
∑

j kj, where ki is the degree of node

i and the sum goes over all nodes of the central module.) In the second step (n = 2,

Fig. 4.7c) we again create four identical copies of the 25-node structure obtained

thus far, but we connect only a p2 fraction of the newly added nodes to the central

module. Subsequently, in each iteration n the central module of size 5n is replicated

four times, and in each new module a pn fraction will connect to the current central

module, requiring the addition of (5p)n new links.

As figure 4.8 shows, changing p alters the slope of both P (k) and C(k) on a

log-log plot. In general, we find that increasing p decreases the exponents γ and β

(Fig. 4.8b,d). The exponent β = 1 is recovered for p = 1, i.e. when all nodes of
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Figure 4.8. The scaling properties of the stochastic model. (a) The degree dis-
tribution for different p values, indicating that P (k) follows a power law with a p
dependent slope. (b) The dependence of the degree exponent γ on p, determined
by fitting power laws to the curves shown in (a). The exponent γ appears to follow
approximately γ(p) ∼ 1/p (dashed line). (c) The C(k) curve for different p values,
indicating that the hierarchical exponent β depends on p. (d) The dependence of
β on the parameter p. The simulations were performed for N = 57(78,125) nodes.

a module gain a link. While the number of links added to the network changes at

each iteration, for any p ≤ 1 the average degree of the infinitely large network is

finite. Indeed, the average degree follows

〈k〉n =
8

5

(

3

2
+

1− pn+1

1− p

)

, (4.10)

which is finite for any p ≤ 1.
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4.5 Generality of the C(k) Scaling

The scaling of C(k) is not a unique property of the model discussed above. A

version of the model, where we keep the fraction of selected nodes, p, constant from

iteration to iteration, also generates p dependent β and γ exponents. Furthermore,

recently several results indicate that the scaling of C(k) is an intrinsic feature of

several existing growing network models. Indeed, aiming to explain the potential

origin of the scaling in C(k) observed for the Internet, VSPV note that the fitness

model [27, 28] displays a C(k) that appears to scale with k. While there is no

analytical evidence for C(k) ∼ k−β yet, numerical results [200, 201] suggest that the

presence of fitness does generate a hierarchical network architecture. In contrast, in

a recent model proposed by Klemm and Egúıluz there is analytical evidence that

the network obeys the scaling law (4.8) [116]. In their model in each time step a

new node joins the network, connecting to all active nodes in the system. At the

same time an active node is deactivated with probability p ∼ k−1. The insights

offered by the hierarchical model can help understand the origin of the observed

C(k) ∼ k−1. By deactivating the less connected nodes a central core emerges to

which all subsequent nodes tend to link to. New nodes have a large C and small

k, thus they are rapidly deactivated, freezing into a large C state. The older, more

connected, surviving nodes are in contact with a large number of nodes that have

already disappeared from the active list, and they have small C.2

Finally, Szabó, Alava and Kertész have developed a rate equation method to

systematically calculate C(k) for evolving networks models [195]. Applying the

method to a model proposed by Holme and Kim [92] to enhance the degree of

clustering coefficient C seen in the scale free model [20], they have shown that the

2Note, however, that as new nodes tend to connect to nodes that were added to the network
shortly before them, the model generates a close to one-dimensional structure in time [199].
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scaling of C(k) depends on the parameter p, which governs the rate at which new

nodes connect to the neighbors of selected nodes, bypassing preferential attachment.

As for p = 0 the Holme-Kim model reduces to the scale free model, Szabó, Alava and

Kertész find that in this limit the scaling of C(k) vanishes. These models indicate

that several microscopic mechanisms could generate a hierarchical topology, just as

several models are able to create a scale free network [12, 58].

4.6 Discussion

The identified hierarchical architecture offers a new perspective on the topology

of complex networks. Indeed, the fact that many large networks are scale free is

now well established. It is also clear that most networks have a modular topology,

quantified by the high clustering coefficient they display. Such modules have been

proposed to be a fundamental feature of biological systems [89, 174], but have been

discussed in the context of the WWW [77, 76, 127], and social networks as well [86,

210]. The hierarchical topology offers a new avenue for bringing under a single roof

these two concepts, giving a precise and quantitative meaning for the network’s

modularity. It indicates that we should not think of modularity as the coexistence

of relatively independent groups of nodes. Instead, we have many small clusters that

are densely interconnected. These combine to form larger, but less cohesive groups,

which combine again to form even larger and even less interconnected clusters. This

self-similar nesting of different groups or modules into each other forces a strict fine

structure on real networks.

Most interesting is, however, the fact that the hierarchical nature of these net-

works is well captured by a simple quantity, the C(k) curve, offering us a relatively

straightforward method to identify the presence of hierarchy in real networks. The

law (4.8) indicates that the number and the size of the groups of different cohesive-
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ness is not random, but follow rather strict scaling laws.

The presence of such a hierarchical architecture reinterprets the role of the hubs

in complex networks. Hubs, the highly connected nodes at the tail of the power

law degree distribution, are known to play a key role in keeping complex networks

together, playing a crucial role from the robustness of the network [14, 44] to the

spread of viruses in scale free networks [165]. Our measurements indicate that the

clustering coefficient characterizing the hubs decreases linearly with the degree. This

implies that while the small nodes are part of highly cohesive, densely interlinked

clusters, the hubs are not, as their neighbors have a small chance of linking to each

other. Therefore, the hubs play the important role of bridging the many small

communities of clusters into a single, integrated network.
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CHAPTER 5

METABOLIC NETWORKS

5.1 Motivation

The identification and characterization of the system-level features of biological

organization is a key issue in post-genomic biology [89, 114, 215]. The concept of

modularity, the assumption that cellular functionality can be partitioned into a col-

lection of well defined units [89, 125, 172, 93, 90, 188], is a very popular paradigm of

this field, attempting to connect structural elements of living systems to functions

they perform. Spatially and chemically isolated molecular machines or protein com-

plexes (such as ribosomes and flagella) are prominent examples of such functional

units, but more extended modules, such as those achieving their isolation through

the initial binding of a signaling molecule [15], are also apparent. Simultaneously,

it is recognized that the thousands of components of a living cell are dynamically

interconnected, so that the cell’s functional properties are ultimately encoded into

a complex intracellular web of molecular interactions [114, 215, 125, 172, 93, 188].

This is perhaps most evident with cellular metabolism, a fully connected biochemical

network in which hundreds of metabolic substrates are densely integrated through

biochemical reactions. Within this network, however, modular organization (i.e.,

clear boundaries between subnetworks) is not immediately apparent. As we noted

previously in §1.4.1, the degree distribution P (k) of a metabolic network decays as

a power law P (k) ∼ k−γ with γ ' 2.2 in all studied organisms [101, 206], suggesting
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that metabolic networks have a scale free topology. This implies the existence of a

few highly connected nodes (e.g., pyruvate or coenzyme A), which participate in a

very large number of metabolic reactions. With a large number of links, these hubs

seem to integrate all substrates into a single, integrated web in which the existence

of fully separated modules is prohibited by definition (Fig. 5.1a).

Nonetheless, a number of approaches for analyzing the functional capabilities

of metabolic networks indicate the existence of separable functional elements [181,

183]. Also, from a purely topological perspective, metabolic networks are known to

possess a high clustering coefficients [206], a property that is suggestive of a modular

organization. In itself, this implies that the metabolism has a modular topology,

potentially comprising several densely interconnected functional modules of varying

sizes that are connected by few intermodule links (Fig. 5.1b). However, such clear-

cut modularity imposes severe restrictions on the degree distribution, implying that

most nodes have approximately the same number of links, which contrasts with the

metabolic network’s scale free nature [101, 206].

In the course of this chapter we show that hierarchical modularity (Fig. 5.1c),

described in detail in the previous chapter, reconciles all the observed properties of

metabolic networks within a single framework. Moreover, the hierarchical module

structure can be easily uncovered and it corresponds to known functional classifica-

tion of metabolic reactions. It also gives us a new perspective on the arrangement

of lethal enzymes within the various parts of the metabolism. In the next chap-

ter we propose a simple, biologically motivated mechanism which can explain the

emergence of preferential attachment in metabolic networks. The network model

based on this mechanism uses only local growth rules, it nevertheless captures the

mentioned topological properties.
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(b)

(a) Scale−free

Hierarchical(c)

Modular

Figure 5.1. Complex network models. (a) Schematic illustration of a scale free
network. (b) Schematic illustration of a manifestly modular network made of four
highly interlinked modules connected to each other by a few links. (c) A hierarchical
network with hierarchical levels represented in increasing order from blue to green
to red. All 3D illustrations are networks with 256 nodes, arranged in space with a
standard graph drawing algorithm [78].
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5.2 Hierarchy in Cellular Metabolism

5.2.1 Definition of the Metabolic Network

Metabolic reactions can be mapped onto a network in a few different ways, for

example one can represent the metabolism as a substrate graph where links are

defined by reactions, or one can use the dual reaction graph where links are shared

substrates of two different reactions.

In our metabolic network representation substrates are the nodes of the network,

while the links connect all in-coming substrates (educts) of a reaction to all its

outgoing substrates (products) [101] (Fig. 5.2a). The E. coli metabolic network

defined this way has N = 885 nodes, and it can be visualized using a standard

clustering graph drawing algorithm built into the Pajek software [78] (Fig. 5.2b)

A + B      > C + D

A C

B D
(a) (b)

Figure 5.2. (a) Graph theoretic representation of a reaction in a metabolic network.
(b) The complete E. coli metabolic network.

5.2.2 Clustering in Metabolic Networks

To determine whether strong clustering along with the known scale free topology

is indeed a generic property of all metabolic networks, we first calculated the average
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clustering coefficient for 43 different organisms [101, 160] as a function of the number

of distinct substrates, N , present in their metabolism. We found that, for all 43

organisms, the average clustering coefficient is about an order of magnitude larger

than that expected for a scale free network of similar size (Fig. 5.3), suggesting that

metabolic networks in all organisms are characterized by a high intrinsic potential

modularity. We also observed that, in contrast with the prediction of the scale

free model, for which the clustering coefficient decreases as (lnN)2/N [116, 30], the

clustering coefficient of metabolic networks is independent of their size (Fig. 5.3).
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Figure 5.3. The average clustering coefficient for 43 organisms [101] is shown as a
function of the number of substrates N present in each of them. Species belonging
to archaea (purple), bacteria (green), and eukaryotes (blue) are shown. The dashed
line indicates the dependence of the clustering coefficient on the network size for a
module-free scale free network, and the diamonds denote C for a scale free network
with the same parameters (N and number of links) as observed in the 43 organisms.

These results demonstrate a fundamental conflict between the predictions of

previous models of metabolic organization. The high, size-independent clustering

coefficient offers strong evidence for modularity, whereas the power law degree dis-

tribution of all metabolic networks [101, 206] strongly supports the scale free model
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and rules out a manifestly modular topology.

To investigate whether hierarchical organization is present in cellular metabolism

we measured the C(k) function for the metabolic networks of all 43 organisms.
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Figure 5.4. Dependence of the clustering coefficient on the node’s degree in three
organisms: (a) Aquidex aeolicus (archaea), (b) Escherichia coli (bacterium), (c)
and Saccharomices cerevisiae (eukaryote). In (d) the C(k) curves averaged over
all 43 organisms are shown, while the inset displays all 43 species together. The
dashed lines correspond to C(k) ∼ k−1, and in (a–c) the diamonds represent C(k)
expected for a scale free network (Fig. 5.2a) of similar size, indicating the absence
of scaling. The wide fluctuations are due to the small size of the network.

As shown in figure 5.4, for each organism C(k) is approximated by C(k) ∼ k−1,

in contrast to the k–independent C(k) predicted by both the scale free and modular

networks. This provides direct evidence for an inherently hierarchical organization.
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5.3 The E. Coli Metabolic Network

A key issue from a biological perspective is whether the identified hierarchical

architecture reflects the true functional organization of cellular metabolism. To

uncover potential relationships between topological modularity and the functional

classification of different metabolites we concentrate on the metabolic network of

Escherichia coli, whose metabolic reactions have been exhaustively mapped and

studied, both biochemically and genetically [109].

5.3.1 Generating the Reduced E. Coli Metabolic Network

The E. coli network shown in figure 5.2 is very dense and it looks much like

the module-free scale free network shown in figure 5.1a. A partial reason for this

is the limitation of a three-dimensional spacial arrangement that is ill suited for

illustration of dense webs. There is also a biological reason specific to the metabolic

network. Namely, metabolism relies heavily on the usage of a few substrate pairs

which undergo very generic chemical changes in a large number of reactions of

all types. A representative example is the ATP–ADP pair, the cell’s energy fuel

molecules. As a phosphate group is broken off ATP (adenosine-triphosphate), the

energy released from the chemical bond fuels the chemical change of the substrate(s)

ATP reacts with. This mechanism is so generic that ATP and ADP are the greatest

hubs of our network: they are linked to a significant fraction of all substrates.

Biochemical Reduction

Here we describe a method by which we account for the above mentioned pecu-

liarity of metabolism. A link from ATP, ADP, water, etc. to a metabolite A often

carries little biologically relevant information about the function of A. There are

many different reactions where other pairs of metabolites help some reactions to
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take place: exchange of a proton or a methyl group, for example.

In order to focus on biologically relevant substrate transformations, we have

performed a biochemical reduction of the metabolic network. Our guiding principle

was to maintain the main line of substrate transformation on each pathway. In

figure 5.5 we illustrate the reduction process, showing an original pathway map

(left), the network corresponding to it (middle), and the network obtained after the

reduction process (right).

UDP

UMP

UTP

othoPCTP

NH4+

UMP

UDP

UTP

CTP

ATP

ADP

Pathway before cleaning Pathway after cleaning

Figure 5.5. Biochemical reduction of the pathways of the metabolic network. The
middle panel shows the full graph theoretic representation of the pathway shown in
the left panel. The right panel displays the pathway after biochemical reduction.

It is important to note that the reduction process is completely local: it takes

place at the level of each reaction, and does not result in the removal of metabolites,

but only in the removal of links from the graph representation.

The resulting biochemically reduced metabolic network for E. coli is shown in

figure 5.6a.
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Topological Reduction

To further reduce the complexity of the metabolic graph we continue with a

two-step topological reduction.

Hair

Arc

(a) (b)

Figure 5.6. (a) The E. coli metabolic network after biochemical reduction. (b)
Topological reduction, which implies temporally removing all hair (green), and re-
placing each arc (blue) with a single link.

As figure 5.6a shows, many pathways uncovered by the first reduction are con-

nected to the rest of the metabolic network by a single substrate (green parts), or

represent a long chain of consecutive substrates that appear as an arc between two

substrates, and have no other side connections (blue arcs). Since the topological

location of the strings of substrates depend only on one or two multiply connected

terminal substrates (red), we can temporarily remove the elements of the long non-

branching pathways without altering the topology of the core metabolism.

We define hairs (green on Fig. 5.6) as all sets of nodes that can be separated

from the network by cutting one link. An arc (blue on Fig. 5.6) is an array of
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nodes connected by only two links to the rest of the metabolism, leading from one

well-connected substrate (red on Fig. 5.6) to another. To generate the reduced

metabolic network we have removed all hairs from the network and replaced all arcs

with a single link, directly connecting the substrates at the two ends of an arc.1 A

schematic topological reduction can be seen on figure 5.6.

(a) No hair. (b) No hair, shortened arcs.

Figure 5.7. Topological reduction of the metabolic network. Starting from the
biochemically reduced metabolic network shown in figure 5.6a, we removed all hair
(a) and arcs (b) from the network. The color code of the nodes in the final figure
denotes the corresponding substrate’s functional class (See Fig. 5.11).

While the substrates removed during the topological reduction process are bio-

logically important components of the network, their removal does not change the

way subunits that they were removed from connect to other parts of the metabolism.

In this sense, they are topologically irrelevant.2 The result of this two step reduction

of the E. coli metabolism is shown on figure 5.7.

1Note that we do not repeat the above described process on the reduced network. Thus, after
the reduced network is ready, it can have arcs and hairs in it (see Fig. 5.7b, light blue arc in the top
right corner). These appear, for example, when two linked “red” nodes both have hair on them,
so they both have three links. After the reduction they are left with two links and thus are parts
of a newly created arc.

2Removed substrates are later re-added for a final biological analysis (Fig. 5.13).
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Both the biological and topological reduction process affects the connectivity

and the clustering coefficient of the nodes, so it is important to note that these

processes do not change the large-scale properties of the metabolic network. Fig-

ure 5.8 shows the degree distribution and the clustering coefficient of the metabolic

network obtained during the different reduction stages. As the figure shows, the

scaling of P (k) and C(k) remains largely unchanged during this process. This is

not unexpected, as the reduction is purely a local process, which does not alter the

networks’s large-scale features.
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Figure 5.8. Degree distribution and clustering properties of all reduction stages of
the E. coli metabolic network.

5.3.2 Finding the Hierarchically Embedded Modules

After reducing the metabolic network to a representative core, we proceed to

break it up into clusters based on its wiring diagram.

The Topological Overlap Matrix

In order to quantify whether two nodes are closely linked into the same local

cluster, we introduce the topological overlap matrix, OT (i, j). Topological overlap of

1 between substrates i and j implies that they are connected to the same substrates,
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whereas a 0 value indicates that i and j do not share a link, nor links to common

substrates among the metabolites they react with. Defining the adjacency matrix,

li,j , of the network as

li,j =











1 if i and j are connected

0 if i and j are not connected
, (5.1)

the elements of the overlap matrix are given by

OT (i, j) =

∑N

l=1li,l · lj,l + li,j
min(ki, kj) + 1− li,j

. (5.2)

The overlap matrix for the E. coli metabolic network, with alphabetically ordered

substrates, is shown on figure 5.9a. There is some grouping of the overlap values of

nearby nodes, due to the fact that similarly named metabolites often have related

functions.

As the topological overlap matrix is expected to encode the comprehensive func-

tional relatedness of the substrates forming the metabolic network, we investigated

whether potential functional modules encoded in the network topology can be au-

tomatically uncovered.

Hierarchical Clustering Algorithm

We choose the un-weighted average linkage algorithm (or Un-weighted Pair

Group Method with Arithmetic Mean) known as UPGMA [191, 63] for our hier-

archical clustering method.3 This algorithm first finds the largest overlap present in

the matrix, joins the corresponding substrates u and v to a branching point on the

tree, and substitutes them with a “new” cluster {u, v}. This new unit replaces the

original u and v in the overlap matrix. It has an overlap with an arbitrary substrate

3Other approaches to discern modules in metabolic networks are based on the idea that edges
along a large number of shortest paths are likely to link different modules of the network [92, 84].
Edges on the largest number of paths were iteratively removed, slowly breaking the network into
its functional modules.
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Figure 5.9. (a) Overlap matrix of alphabetical ordered substrates in the E. coli
metabolic network. (b) Topological overlap illustrated on a small hypothetical
network. On each link we indicate the topological overlap for the connected nodes
and in parenthesis next to each node we indicate its clustering coefficient. (c)
The topological overlap matrix corresponding to the small network shown in (b).
The rows and columns of the matrix were reordered by the UPGMA clustering
method [191, 63], allowing us to identify and place close to each other those nodes
that have high topological overlap. The matrix color code denotes the degree of
topological overlap between the nodes (see side-bar on (a)).
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(cluster) w given by

OT ({u, v}, w) =
nu ·OT (u,w) + nv ·OT (v, w)

nu + nv

, (5.3)

where nu is the number of components in cluster u. This definition ensures that all

original overlap values are represented with the same weight in the overlap value

of the joint cluster, hence the method’s name, “un-weighted average linkage clus-

tering.” Repeating this rule eventually shrinks the overlap matrix to a single unit,

corresponding to the root of the hierarchical tree. Thus, we obtain a tree with all the

original substrates as its end-leafs, grouped naturally on branches reflecting their

hierarchical overlap. When overlap values between clusters are redundant (i.e. there

are at least two groups of clusters with the same overlap value) the program auto-

matically joins the pair found first. The ordering of two branches under a junction

is irrelevant, thus arbitrary. The distance between (height of) two junction levels is

defined to be one.

First we tested the clustering algorithm on the small hypothetical network shown

in figure 5.9b. The method placed those nodes that have a high topological overlap

close to each other (Fig. 5.9c), correctly identifying the the three distinct modules

built into the model of figure 5.9b. It also identified the relationship between the

three modules, as EFG and HIJK are closer to each other in a topological sense

than the ABC module (Fig. 5.9b).

5.3.3 Modules of the E. coli Metabolic Network

The clustering of the E. coli metabolic network, and thus the ordering of the

overlap matrix according to a substrate’s horizontal location on the hierarchical tree,

lead to figure 5.10. This figure provided us a global topological representation of

the metabolism.

Groups of metabolites forming tightly interconnected clusters are visually appar-
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Figure 5.10. Topological overlap matrix corresponding to the E. coli metabolism,
together with the corresponding hierarchical tree (top and right side) that quantifies
the relationship between the different modules. The branches of the tree are color
coded to reflect the functional classification of their substrates. The color code
of the matrix denotes the degree of topological overlap shown in the matrix (See
scale on Fig. 5.9a). On the bottom we show the large-scale functional map of the
metabolism, as suggested by the hierarchical tree.

91



ent along the diagonal line of the matrix, and upon closer inspection the hierarchy

of nested topological modules of increasing sizes and decreasing interconnectedness

can also be seen.

To visualize the relationship between topological modules and the known func-

tional properties of the metabolites, we color coded the branches of the derived

hierarchical tree according to the predominant biochemical class of the substrates

it produces, using a standard, small molecule biochemistry-based classification of

metabolism [160]. The biochemical classes we used to group the metabolites repre-

sent carbohydrate metabolism (blue), nucleotide and nucleic acid metabolism (red),

protein, peptide and amino acid metabolism (green), lipid metabolism (cyan), aro-

matic compound metabolism (dark pink), monocarbon compound metabolism (yel-

low) and coenzyme metabolism (light orange).

To our pleasant surprise, the color coding of the hierarchical tree according to

biochemical classification of the metabolites proved a very good agreement between

the uncovered modular hierarchy and the standard classes of the metabolism. As

shown in figure 5.10, and in the three-dimensional representation of the core network

in figure 5.11, we find that most substrates of a given small molecule class are

distributed on the same branch of the tree (Fig. 5.10) and correspond to relatively

well-delimited regions of the metabolic network (Fig. 5.11). Therefore, there are

strong correlations between shared biochemical classification of metabolites and the

global topological organization of E. coli metabolism (Fig. 5.10, bottom).

At the highest level, we find that the E. coli metabolic network is partitioned

into three large classes, appearing as major branches on the tree.

1. The smallest of these branches consists of the Coenzyme and Vitamin

Metabolism (light orange), its inner core is divided into Vitamin K - and

Terpene Metabolism, while its outer part is specific to Sirohem Anabolism
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Figure 5.11. 3-D representation of the reduced E. coli metabolic network. Each
node is color coded by the functional class to which it belongs, and is identical to
the color code applied to the branches of the tree shown in figure 5.10. Note that the
different functional classes are visibly segregated into topologically distinct regions
of metabolism. The blue-shaded region denotes the nodes belonging to pyrimidine
metabolism, discussed below.

(See Fig. 5.12 for a larger view of the hierarchical tree with the corresponding

functional map).

2. The second major branch represents the Nucleotide and Nucleic Acid

Metabolism (red). Its two major sub-branches are clearly divided into the

Pyrimidine and Purine Metabolism. Interestingly, the Purine group has a

small sub-branch representing Dihydrofolate Anabolism, a subgroup that is

shared with the Coenzyme and Vitamin Metabolism (light orange). Its strong
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Figure 5.12. Hierarchical tree representing the reduced E. coli metabolic network.
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link to Purine Metabolism is due to the dihydroneopterin-triphosphate syn-

thesis pathway from guanosine-triphosphate.

3. The third and largest branch naturally breaks into a smaller branch containing

largely Carbohydrate Metabolism (blue), and a second, less segregated

one. This branch, in addition to Proteins, Peptides and Amino Acids

group (PPA, green), also contains several apparently unrelated pathways.

(a) The Carbohydrate branch contains most of the Poly- and Disaccha-

rides on the sub-branch on the left; while Monosaccharides (some of

which are also present on the left branch), Sugar Alcohols, and Alco-

hol metabolites dominate the right branch. Membrane Lipid Metabolism

(cyan), which is fairly independent of the other Lipid group, the Fatty

Acid Metabolism, is nested into the Carbohydrates branch due to shared

glycerol metabolism pathways used in its biosynthesis. A small group

representing Pyridoxine Anabolism (Vitamins: Vitamin 6B, light or-

ange) is linked into this branch via biosynthesis from D-erythrose-4P.

Another small nested group is the 3-phosphoshikimate biosynthesis from

D-erythrose-4P, a part of Chorismate Metabolism shared by both the

Aromatic Compounds Metabolism (dark pink), and the Coenzyme group.

(b) On the Proteins, Peptides and Amino Acids group (PPA, green)

a clear and separate sub-branch at the left side represents Fatty Acid

Metabolism (part of Lipid Metabolism), strongly linked to the Or-

ganic Acids and the Citrate Cycle (Carbohydrates, blue). Since almost

half of the Amino Acid class substrates are shared with Carbohydrates

Metabolism, pathways belonging to Pyruvate, Glyoxylate andMetabolism

Sugar Alcohols are naturally grouped within the PPA group, appearing
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as small red branches on the figure. Formate Metabolism, which rep-

resents almost the complete Monocarbon Compounds Metabolism

class (yellow) is linked to Metabolism Sugar Alcohols. The IMP an-

abolic pathway (part of Purine metabolism, blue) starts with 5-phospho-

’alpha’-D-ribose-1-diphosphate and the substrates on this pathway di-

verge from Purine metabolism, and are grouped on the PPA branch.

Similarly, Nicotinamide Metabolism (Coenzymes, light orange) is grouped

into the PPA branch due to NAD(+) biosynthesis from L-aspartate. En-

terobactin biosynthesis from the Chorismate pathway links parts of Cho-

rismate metabolism (Coenzymes, light orange) to L-serine, the small (2

substrate) insert next to the Pyruvate group (a small blue group, shared

by Carbohydrates and PPA). The pathway leading from L-Glutamate to

L-glutamate-1-semialdehyde is part of Lipid, Aromatic Compounds and

Coenzymes metabolism, its links anchor it into Glutamate metabolism.

The PPA substrates on this large branch tend to group according to clas-

sifications based on the names of the amino acids, but not all of them

show up on distinguishable sub-branches. They tend to group internally

as well, for example most of glutamate and arginine metabolism sub-

strates can be found on the same branch.

5.3.4 Biochemical Pathways in the Pyrimidine Module

To correlate modules obtained from our graph theory-based analysis to ac-

tual biochemical pathways, we concentrated on pathways involving the Pyrimidine

Metabolites. Our method divided these pathways into four modules (Fig. 5.13,

which represent a topologically well-limited area of E. coli metabolism (Fig. 5.11,

light-blue circle).
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Figure 5.13. A detailed diagram of the metabolic reactions that surround and incor-
porate the pyrimidine metabolic module. Red boxes denote the substrates directly
appearing in the reduced metabolism and the tree shown in figure 5.11. Substrates in
green boxes are internal to pyrimidine metabolism, but represent members of non-
branching pathways or end pathways branching from a metabolite with multiple
connections. Blue and black boxes show the connections of pyrimidine metabo-
lites to other parts of the metabolic network: Black boxes denote core substrates
belonging to other branches of the metabolic tree figure 5.10, while blue boxes de-
note non-branching pathways (if present) leading to those substrates. Shaded boxes
under reactions highlight modules suggested by the hierarchical tree. Shaded blue
boxes along the links display the enzymes catalyzing the corresponding reactions,
and the arrows show the direction of the reactions according to the WIT metabolic
maps [160].

As shown in figure 5.13, all highly connected metabolites (red boxes) correspond

to their respective biochemical reactions within pyrimidine metabolism, together

with those substrates that were removed during the original network reduction pro-

cedure, and then re-added (Fig. 5.13, green boxes). However, it is also apparent

that putative module boundaries do not always overlap with intuitive ‘biochemistry-
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based’ boundaries. For instance, while the synthesis of UMP from L-glutamine is

expected to fall within a single module based on a linear set of biochemical reactions,

the synthesis of UDP from UMP leaps putative module boundaries.

5.3.5 Conclusions

The organization of metabolic networks is likely to combine a capacity for rapid

flux reorganization with a dynamic integration with all other cellular function [206].

Our results indicate that the system-level structure of cellular metabolism is best ap-

proximated by a hierarchical network organization with seamlessly embedded modu-

larity. In contrast to current, intuitive views of modularity (Fig. 5.1b) which assume

the existence of a set of modules with a non-uniform size potentially separated from

other modules, we find that the metabolic network has an inherent self-similar prop-

erty: there are many highly integrated small modules, which group into a few larger

modules, which in turn can be integrated into even larger modules. This is sup-

ported by visual inspection of the derived hierarchical tree (Fig. 5.10), which offers

a natural breakdown of metabolism into several large modules, which are further

partitioned into smaller, but more integrated sub-modules.

5.4 Lethality of the Metabolic Modules

Defining which gene products play an essential role and under what condition,

is vital to understanding the complexity of living organisms. Although methods

to rapidly and systematically determine genome-wide gene essentiality4 are less ad-

vanced than other functional genomic techniques, a number of essentiality surveys

involving different species have been reported. Many experimental approaches have

been used to produce such data including individual gene knockouts in S. cere-

4Essential or lethal genes, defined relative to a certain condition the organism is placed in, are
genes the absence of which causes the organism to die.
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visiae [82, 214] and C. elegans [110], RNA interference in C. elegans [107] and

whole-genome transposon mutagenesis studies in several microorganisms. In the lat-

ter group, complete or extensive lists of essential and expendable genes are available

forM. pneumoniae andM. genitalium [95], H. influenzae [9], and S. cerevisiae [179].

However, relatively little effort has been committed to a system-level interpretation

of these data in terms of cellular function or evolutionary relationships with other

organisms [103]. Escherichia coli has historically been the focus of intense biochemi-

cal, genetic and physiologic scrutiny, but genomic essentiality data for this organism

has remained incomplete.

Our close collaborators at the Northwestern University in Chicago, lead by Prof.

Zoltán Oltvai, performed a genome-wide, comprehensive experimental assessment of

the E. coli MG1655 genes necessary for robust aerobic growth in rich medium [80].

Of the 4, 291 protein-coding genes known in E. coli they assessed the essentiality

of 3, 746 genes (∼ 87%). Using the data generated by the experimental group, first

we demonstrated that essential genes have a significant tendency to be preserved

by evolution throughout the bacterial kingdom, especially for a subset of genes

representing key cellular processes such as DNA replication and protein synthesis.

Next, we analyzed the essentiality of metabolic enzymes from the perspective of

cellular system-level organization, demonstrating an enrichment of those enzymes

that catalyze reactions within evolutionary conserved topological modules in the

metabolic web of E. coli [80].

5.4.1 Experimental Procedure

The genetic footprinting technique, originally described for yeast [190], is an

efficient experimental approach that allows the simultaneous study of thousands of
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genes under various conditions5 [81].

• Transposome insertion. The method begins with the introduction of a

special short piece of DNA into a large number of living cells. Called the

transposome, this piece of DNA has the ability to insert itself into the cellular

DNA at a random position. Using very low concentrations of the transposome

one can make sure that at most one insertion occurs per cell.

• Selective Cell Growth. The next step in the process is to study the behavior

of cells affected by the insertions. Half of the treated cell culture is frozen and

stored immediately after the transposome insertion, the other half is grown in

rich medium for several generations. Cells hit by the insertion inside essential

coding regions can not perform certain functions, transcribe certain proteins

and die out of the population.

• Polymerase Chain Reaction. The surviving population is then subject to

an experimental procedure that prepares the extracted cellular DNA for iden-

tification of the insertion position along the genome. This procedure is called

Polymerase Chain Reaction (PCR), and it takes advantage of the natural abil-

ity of a single-strand DNA to assemble its complementary strand. In order

for this process to occur, an initiation point is needed: a DNA region where

the strand is already complemented (a short region on the single-strand DNA

where base-pairing already occurred). After DNA is taken out of cells, it is

inserted in a mix containing large quantities of free base molecules (A,T,G,C)

and denatured (heated until it breaks into two strands). Then, two special

single-strand DNA sequences are added: primers complementary to opposite

strands of a duplex DNA. These are designed sequences that bind to the two

5For a more detailed description and experimental protocols, visit http://www.umsl.edu/

%7Ebalazsi/JBact2003/genetic.html.
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genomic strands in selected locations: they mark the beginning and the end

of the region being amplified. In the present experiment one primer binds to

the inserted transposome sequence, the other binds to a chosen E. coli gene

(the experiment is performed separately with primers designed for all genes).

After the binding of the two primers both DNA strands are complemented in

the 5′ → 3′ direction.6 PCR consists of multiple cycles of denaturation of the

synthesized DNA, annealing of the primers (lowering the temperature until

base-pairing is favorable and the primers bind to the DNA) and synthesis of

the complementary DNA chains. An exponential amplification of the frag-

ment whose ends are defined by the 5′ ends of the two primers occurs, while

the longer, original template sequence is amplified at most linearly. In our case

segments of the chosen gene between its starting point and all the insertions

that are still present in the grown population are amplified.

• Determining the insertion points. DNA sequences resulted in the PCR

were size-separated on agarose gels using a technique called gel electrophoresis.

In this technique the charged DNA molecules are forced across a span of gel,

driven by an electrical current. A molecule’s properties determine how rapidly

an electric field can move the molecule through a gelatinous medium. The

band pattern yielded by the DNA mix in gel electrophoresis identifies the

positions insertions occurred at, since smaller fragments have travelled the

furthest.

The insertion frequency averaged over a 100,000 base-pair sliding window is

shown in figure 5.14. Gaps in the data (chromosomal regions where transposition

events could not be detected due to technical reasons) are indicated by short vertical

6DNA synthesis always proceeds in one direction along a single strand DNA, these directions
are opposite on the two strands.
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lines along the x-axis. The regions where distribution of transposition events signif-

icantly deviate from a Poisson process (P-values < 0.01) are marked by horizontal

green lines. “OriC” shows the origin of chromosomal replication, “dif” denotes the

replication termination area.7

Figure 5.14. Distribution of transposon insertion density along the E. coli chromo-
some. Gray trace shows the transposon insertion density calculated as the number
of transposition events per 100-kb sliding window over the entire E. coli MG1655
chromosome. The blue trace was computed in a similar manner, except that all
chromosomal regions corresponding to essential and ambiguous genes were excluded
from the calculations in order to reconstruct insert distribution prior to selective
outgrowth.

5.4.2 Evolutionary Preservation of Essential Genes

To assess the data set from an evolutionary perspective, we examined the dis-

tribution of conditionally essential and expendable E. coli genes with respect to

the occurrence of orthologs8 across a broad range of diverse bacterial genomes.

Orthologs within a reference set of 32 complete bacterial genomes chosen to repre-

sent maximum phylogenic diversity were identified (see the Supplementary Material

of [80]), and quantified by a simple parameter: the Evolutionary Retention Index

(ERI). ERI is computed for each E. coli gene as the fraction of genomes from the

7E. coli has one circular chromosome and its replication starts at the oriC site, which moves
in both directions towards the dif termination point.

8Two proteins from two different species that are thought to have a common evolutionary origin
and thus are similar in amino acid sequence as well as in function are called orthologs.
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reference set containing an ortholog of the gene, varying from 0 (for genes unique

to E. coli) to 1.0 (for omnipresent genes).

The tendency of essential genes to be preserved by evolution is reflected in fig-

ure 5.15, showing the fraction of essential genes at different ERI values.9 The

relationship between the two parameters has the form y = y0+ a · bx, implying that

the essentiality fraction of genes with a given ERI is partly due to a very strong

tendency of essential genes to be retained by evolution (the exponential behavior is

dominant above ERI =0.6) and partly to a fraction of essential genes (∼ 10%) that

is present among genes within any ERI value group.
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Figure 5.15. Fraction of essential genes at different ERI values. The data were fitted
with y = 12.0 + 0.023 · (0.019)x (dashed red line). The dotted line represents the
fraction of essential genes for the whole genome.

9Unknown or ambiguous genes are not considered in the calculation of the fraction.
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5.4.3 Essentiality of the Topological Modules

We have previously shown that hierarchical modularity in E. coli closely overlaps

with known metabolic functions [174]. To comprehend the results of individual gene

essentiality in the context of system level functional organization, we projected the

essentiality of metabolic enzymes onto the global topological representation of the

E. coli metabolic network.

As shown in figure 5.16 (top panel), the overall essentiality ratio of metabolic

enzymes within the full metabolic network is relatively low (indicated by the green

background of the whole tree), with essential enzymes limited to a subset of mod-

ules. Visual inspection of the figure indicates that while many metabolic modules are

almost entirely nonessential, at the lowest hierarchical level several branches corre-

sponding to small topological modules appear to be essential, i.e., they are composed

of biochemical reactions catalyzed by predominantly essential enzymes. Of these,

the largest fractions are within the nucleotide, coenzyme, and lipid metabolism.

The pyrimidine metabolic module appears to contain the highest level of essential

reactions.

A significant correlation between essentiality (tree on the top on Fig. 5.16) and

ERI values (tree underneath) is apparent within metabolic modules, and many of

the highly essential modules also contain metabolic enzymes with the highest ERI

values.

5.4.4 Conclusions

The genetic footprinting technique used to assess gene essentiality in E. coli

across the entire genome generated an internally coherent data set, which was ex-

amined at increasingly abstract levels to refine models of cellular organization. At

the finest level, individual gene essentiality reveals basic physiologic information
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about cellular metabolism under specific growth conditions. At a more abstract

level, the data can be used for focused comparative genomic analysis to define the

core bacterial genetic repertoire, while at the highest level of abstraction, the data

can be used to detect organizational principles of cellular networks.
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CHAPTER 6

MODELLING THE E. COLI METABOLIC NETWORK

6.1 Motivation

The iterative duplication and integration of clustered nodes in the hierarchi-

cal model seamlessly combines scale free topology with an inherent modular struc-

ture [174]. However, the growth and evolution of this model, in a manner similar to

many scale free models, is based on predefined global organization rules. Our under-

standing of biological systems suggests that local rules govern the growth dynamics

of the underlying networks. The emergence of preferential attachment is expected to

be a consequence of these local events, unlike in some human-made systems, where

visibility of a node (correlated to its connectivity) often explains its increased ability

to gain new links.1 Indeed, modelling proteome evolution as a series of gene dupli-

cations leads to the experimentally observed scale free topology of protein-protein

interaction networks [205, 198, 192, 163]. In duplication/diversification models for

the evolution of the proteome, a node which represents a protein is randomly cho-

sen and duplicated in each time step. While all interactions (edges) of the original

protein are initially retained, subsequent mutations of genes might lead to the loss

and gain of interactions (See Fig. 6.1). These models offer an elegant explanation

for preferential attachment in protein networks: a well connected protein is more

1For example, a new webpage is quite likely to connect to a few well known hub pages everybody
looks at: Google, CNN or Yahoo. Well cited papers are examples from citation networks: they
have large impact on a research area and the more known (cited) they get, the more the community
cites them.
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likely to have a duplicating neighbor than less connected ones.

δ α

Figure 6.1. A duplication/diversification model for the evolution of protein interac-
tion networks. A randomly chosen node (blue) is duplicated with all its interactions
(green). Then these interactions may be lost with probability δ, new ones can be
gained with probability α (green interaction).

Metabolic reactions and the growth of metabolic networks are governed by the

strict rules of chemistry. There is no good intuitive reason for a substrate to become

a hub, nor for a well connected molecule (participating in many reactions) to become

part of new reactions more easily than other molecules (preferential attachment).

Furthermore, modelling of the evolution of metabolic networks encounters a few

difficulties. First, while protein-protein interactions unambiguously define a net-

work, chemistry suggests many ways to determine network structures in metabolic

reactions. Second, since metabolic reactions are catalyzed by enzymes, we have to

account for their impact on the evolution of a metabolic network. Here we propose a

simple model with local growth and rewiring rules based on enzyme evolution, able

to capture both the scale free and hierarchical nature of metabolic networks [129].

6.2 Definition of the Metabolic Network

We propose a network abstraction of metabolic reactions which is based on the

structural similarity of molecules. In metabolic reactions an enzyme catalyzes the
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transfer of molecular substructures from educts to products. Enzymatically cat-

alyzed reactions are often relatively low in energy, thus the structural changes are

usually small in each individual reaction. This results in strong chemical similarity

of products and educts. As an example we show the hexokinase reaction of gly-

colysis (see Fig. 6.2), catalyzed by the hexokinase enzyme. Hexokinase transfers a

phosphate group from adenosin triphosphate (ATP) to glucose (Glc), resulting in

adenosin diphosphate (ADP) and glucose-6-phosphate (G6P). This catalytic activity

is facilitated by an active center (a “cavity”) where the educts adenosin-triphosphate

(ATP) and glucose (Glc) fit perfectly. Due to the spatial arrangement, the transfer

of a phosphate group from ATP to Glc is catalyzed.
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Figure 6.2. Network representation of a typical metabolic reaction, the hexokinase
reaction of the glykolysis.

Glc and G6P resemble each other by sharing a large part of their structure, thus

in our network representation these substrates are connected. Analogously, ATP

and ADP are connected since ADP is the remainder of ATP after the enzymatically
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catalyzed phosphate-group transfer. In this abstraction, based on structural simi-

larity, edges reflect the activity of enzymes which facilitate the transfer of significant

parts of the chemical substructures between connected substances. Although the

majority of biochemical reactions are reversible, we only consider the most probable

course of each reaction, an approximation which allows us to superimpose a direction

on each edge. Finally, we obtain a directed graph reflecting enzymatically catalyzed

exchanges of substructures between metabolites. Using all known metabolic reac-

tions of E.coli retrieved from the WIT database [160] we set up a network consisting

of 663 substrates embedded in a web by 1, 010 links (Fig. 6.3).2

Superimposing chemical similarity on the connection between substrates pre-

servers the major characteristics of metabolic networks, scale free topology and

hierarchical clustering (see Fig. 6.6).

6.3 Modelling Metabolic Network Evolution

Biochemical reactions are almost exclusively catalyzed by enzymes, which feature

active sites in their spatial structure where substrates fit in. The quality of this fit

is a decisive factor for the specificity and activity of the enzymes. Thus links in

our network represent enzymatic activity which might be lost if the corresponding

protein suffers a mutation. However, a mutation in the active center might destroy

the old and render a new activity which does not entirely change the enzyme’s

specificity (see Fig. 6.4 for a schematic example).

6.3.1 Experimental Basis of the Proposed Model

Early theories of the metabolism’s evolution gave rise to diverging perspectives

on the emergence of enzymatic functions. One classical evolution theory [158] cred-

2We note that this network abstraction is very similar, although not always equivalent to the
biochemical reduction in §5.3.1.
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Figure 6.3. E. coli metabolic network based on similarity of reaction educts and
products.

Figure 6.4. Schematic example of a mutation in the active site of an enzyme. The
new enzyme can catalyze a reaction between substrates physically similar to the
ones in the original reaction.
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ited gene duplication for two copies of a particular protein, which can mutually

backup their functions if mutations disable one of the proteins. To a certain ex-

tent, these relaxed selective constraints support the protein’s capacity to develop

new and dispose old functions. A different hypothesis [105] assumes that very early

enzymes covered a broad band of specificity superposed by low activity. A series of

gene duplications partitioned the initial set of functions, assigning each of the en-

zyme copies more specific tasks. However, not every mutation impacts a molecule’s

propensity to be evolutionary selected, a theory which is called the neutral theory

of evolution [111, 112] or Non-Darwinian Evolution [113]. Although these theories

provide different perspectives on the evolution of the enzyme’s functionality, they

share the common assumption that a mutation in the active site does not utterly

change the structure of the enzyme’s active site. The mutated and original enzyme

should accept similar structures as educts, and lead to substrates similar to the

original products.

A rough preservation of specificity for the educt-structure still allowing for func-

tional diversity appears in a few different ways:

1. The enzyme might accept a slightly different educt, but otherwise lead to the

same product. An example can be found in Pseudomonas strains: two closely

related enzymes, atzA and triA, catalyze the hydrolysation of two triazines

which differ only in one of three side chains. The hydrolysis generates the

same product [170]. The enzymes differ in only nine amino acids: this small

sequential change triggers the enzyme’s susceptibility to an enlarged set of

potential educts that structurally resemble each other on a large scale.

2. Analogously, the opposite case applies as well, since a mutation in an enzyme’s

active site might leave the specificity for the main educt, while generating a

new product. The emergence of a new product out of the same educt is well
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reflected by some experiments in artificial evolution. Cytochrome P450 BM-3

normally catalyzes the oxidation of alkanes, however, with a directed mutation

the enzyme showed alkane hydroxylation activity [70]

3. In a third scenario, a mutation affecting the enzyme’s active site might have

shifted the specificity for both the educts and products. For example the active

site protein sequences of L-galactosidase and L-glucuronidase, which evolved

from a common ancestor, resemble each other to only 25%. However, the

educts and products involved in these reactions differ only to a slight extent

in two distinct molecular positions. Furthermore, by changing four amino

acids of the wild-type L-glucuronidase, its strong preference for L-glucuronids

shifts to a clear affinity for L-galactosides [136].

These experiments show that a small sequential change can give rise to enzymes

which are susceptible to chemically similar educts, while they feature products that

resemble the initial product’s structure.

6.3.2 Definition of the Model

Based on the presented evolutionary experiments, our model network grows as

follows (see Fig. 6.5 for illustration):

• Start with a small seed network, connected randomly via directed links (N0 =

10, L0 = 15).

• At each time-step:

– Randomly choose an arc, let E (educt) be the starting, P (product) the

ending substrate of the link.3

3If E and P are linked in both directions, the two arcs are accounted for separately, so the
random sampling picks them independently.
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– Randomly choose between three cases:

1. E ′ → P case: With probability 1− Pnew, choose a node E ′ based on

similarity to E (do nothing otherwise): Pick E ′ from the first and

second neighbors of E, using probability p for all the first neighbors

and p2 for all its second neighbors (neighbors are counted regardless

of the directions of the links). The value of p is obtained from the

normalization: Nfirst neighbors · p+Nsecond neighbors · p2 = 1. After E ′ is

chosen (and if there is no arc from E ′ to P and E ′ 6= P ), put an arc

from E ′ to P .

2. E → P ′ case: Introduce a new node P ′ into the graph with probabil-

ity Pnew, otherwise (probability 1−Pnew) choose an existing node P ′

based on its similarity to P . The similarity choice works the same

way as in the previous case. After P ′ is chosen (and if there is no arc

from E to P ′ and S 6= P ′) put an arc from E to P ′.

3. E ′ → P ′ case: Choose E ′ from the existing nodes of the graph based

on the similarity to E. Then, with probability Pnew, introduce a

new node P ′ into the graph, or choose an existing node P ′ with

probability 1 − Pnew, based on its similarity to P . After E ′ and P ′

are chosen (and if there is no arc from E ′ to P ′ and E ′ 6= P ′) put an

arc from E ′ to P ′.

– If there was a new link created in this time-step, then remove the S → P

arc with probability 1− Pdup.

• Due to the presence of Pdup, links are being removed and parts of the giant

cluster can fall off, thus the emerging graph can have many disconnected

clusters. We are interested in the giant cluster only (if it forms), so at each
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time-step we disregard the nodes that are not part of the largest cluster. (This

is computationally very important for low Pdup values, where the largest cluster

can be a small fraction of all the nodes once introduced into the graph.)

A new educt entering the cell is a rather rare event in comparison to the frequency

that a mutated enzyme accepts a new, but already present educt. Therefore, we

neglected this explicit albeit infrequent case without jeopardizing the overall validity

of our approach. Since we rest on the assumption that a mutation of the active site

renders an enzyme able to adopt roughly similar chemical structures, the choice of

these substrates is limited to the immediate neighborhood of the affected substrate.

Our abstraction of metabolic reactions implies a direct correspondence between the

structural difference of two substrates and their distance in the network. As an

approximation, we focus on the first two layers around a node, using the above

given definition of “similarity.” In figure 6.5 we give a schematic representation of

the algorithm.

6.3.3 Properties of the Model

For almost all {Pdup, Pnew} parameter pairs for which a giant cluster emerges,4

our model leads to scale free, hierarchical networks. Exceptions are low Pnew values

where the network does not grow sufficiently fast to form large enough hubs to avoid

an exponential cutoff in its degree distribution. We have searched the parameter

space for pairs that best mimic the behavior of the metabolic map. The chosen

parameter pair Pdup = 0.85 and Pnew = 0.6 leads to good agreement of the average

quantities as well as the scaling properties of the model and the E. coli metabolic

network (see Table 6.1 and Fig. 6.6). An exception is the average clustering coeffi-

4Very high rates of new substrate incoming combined with almost no duplication naturally
leads to a fragmented network in which the number of small fragments grows instead of one giant
component.
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Figure 6.5. Schematic illustration of the metabolic network model. The three panels
correspond to the E ′ → P , E → P ′ and E ′ → P cases.

cient, which is quite low in our similarity-based metabolic network. This is largely

due to substrates on “arcs” with k = 2 and C = 0. Arcs are very frequent in the

metabolic network, since larger chemical changes of a substrate into another one are

often facilitated by a series of enzymes forming a well-defined, non-branching path-

way. This is a feature of the metabolic network that out model was not meant to

capture. However, the scaling properties of the clustering coefficient do not change

much under the topological reduction of the metabolic network (see §5.3.1), in which

these arcs are all shortened to a link. The average clustering coefficient of this net-

work is 0.27 (in parentheses in Table 6.1), and its scaling properties match the ones
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of the model network better as well (Fig. 6.6).

TABLE 6.1. PROPERTIES OF THE METABOLIC AND MODEL NETWORKS

E. coli model

connectivity 〈k〉 3.18 3.10
clustering coefficient 〈C〉 0.04 (0.27) 0.26
shortest path length 〈L〉 4.25 4.31
assortativity r -0.12 -0.08
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Figure 6.6. Log-binned distributions of the node’s degree P (k) and clustering coef-
ficient C(k) of the best fitting model and the metabolic network of E. coli.

6.4 Conclusions

Unlike other contemporary models which credit global organization rules for the

incorporation of newly added nodes our model indicates that molecular evolution

governed by local, decentralized mechanisms can also lead to the metabolic net-

work topology observed in the cell. Introduction of chemical similarity, capturing

structural resemblances which arise from the exchange of molecular substructures,

enables us to define a new network abstraction of metabolic reactions. Moreover,

this perspective allows us to model evolutionary events which act locally, in the
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neighborhood of substrates affected by an altered enzyme. We also showed that

rules governing enzyme network evolution can lead to preferential attachment not

only in protein interaction networks, but also in the metabolism. Substrates that

take part in many chemical reactions, the hubs, are more likely to be picked as

new educts or products of a mutated enzyme: There are more enzymes with active

centers specific to a substrate similar to them, enzymes which can then mutate to

catalyze a new reaction, which the hub will be part of.
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CHAPTER 7

OUTLOOK

The hierarchical architecture offers a new perspective on the topology of complex

networks. Our study offers only a starting point for understanding the interplay

between the scale free, hierarchical and modular nature of real systems. While

the C(k) curves offer a tool to unearth the presence of a hierarchy, the necessary

ingredients of a theory to model the emergence of hierarchy is still open to question.

Finally, the role of the geometrical factor, which appears to remove the hierarchy,

needs to be elucidated. Further modelling and empirical studies should allow us to

address these questions.

Progress has already been made both towards modelling the possible origin of

the hierarchy [152, 195, 18] and towards the understanding of dynamic systems

interacting along the links of an underlying hierarchical topology. These dynamical

studies focus mostly on diffusion-related phenomena, like random walk [157, 156] or

epidemic spreading [152]. An interesting finding of the latter study is that strong

clustering in a network can lower the epidemic threshold,1 and thus diseases with

even smaller spreading rates can reach a finite size of the network. On the other

hand, high clustering also limits the size of outbreaks. The fraction of the network

a given disease can infect is smaller in hierarchical networks.

1The epidemic threshold of a disease is the spreading rate (the mean probability that an infected
individual will transmit the disease to a susceptible network neighbor in unit time) above which
the disease reaches a finite fraction of the population instead of dying out.
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7.1 Hierarchy All Around

The fact that the hierarchical nature of networks is captured by a simple quantity,

the C(k) curve, offers us a relatively straightforward method to identify the presence

of hierarchy in real networks. The law (4.8) indicates that the number and the size

of the groups of different cohesiveness is not random, but follows rather strict scaling

laws.

The method proposed in the thesis for identifying hierarchy became part of the

standard tool kit one uses to analyze the topology of networks under consideration.

Many studies have found that networks, either new or already inspected by the field,

show hierarchical C(k) scaling.

An interesting example is software systems analyzed by Myers [144], who rep-

resented six large computer software packages by directed networks of two kinds.

Three of these systems were written in C++, object oriented software that lent itself

to a class-collaboration graph representation. Classes describe the form of objects

in these systems (the nodes of the graph), while collaboration is the process by

which more complex, multi-functional classes are built from simpler ones (defining

the links of the graph). Another group of three procedural systems written in C

were represented as static-call graphs. Nodes of this network are procedures and

possible calls between procedures represent directed links. The study found that all

six graphs are scale free, with degree exponents of 2.5 for the call graphs, γin ' 2

and γout ' 3 for class-collaboration graphs. All six networks show power law C(k)

scaling, indicating hierarchical software organization.

A very different group of hierarchical networks of great interest for the commu-

nity are social systems. The World Trade network mentioned in §1.3.1 shows a clear

power law tail in its clustering function, with an exponent of 0.7 [187]. A social

acquaintance network based on the www.wiw.hu website shows that this social sys-

119



tem also shows strong hierarchy with an exponent β = 0.33 of the C(k) clustering

function [47]. The e-mail network of the University at Rovia i Virgili in Tarragora,

Spain, is also hierarchically structured, as demonstrated in a study by Guimerà et

al. [88].

A large research group in Los Alamos has built a software system capable of

tracing 106 agents in a simulation of different aspects of human society in Portland,

Oregon [42]. The simulation uses a variety of statistical data available about the city

to generate a virtual population “living” its daily life in Portland. One subsystem

of this simulation is TRANSIMS, which captures how individuals move around the

city on a reality-based transportation infrastructure. The network of interest to us,

generated by TRANSIMS, is a graph of over 18, 000 locations on the city, connected

by directed links representing people moving from one location to another during

one simulation day. The program can also generate subgraphs specific to different

activities such as work, recreation or school. The study finds that the out-degree

distribution of the location graph is a power law, and the clustering of locations

with different out degrees falls as a power law. What is more interesting, however,

is that subgraphs of the location network, such as graphs defined by links pointing

to work-related, recreational or school locations only, show a significantly different

topology. While the recreational and school-related graphs are hierarchical, links

pointing to work locations define a clustered, but non-hierarchical graph similar to

other spatially constrained networks like the router-level Internet or the power grid.

A study by Barrat et al. [25] focused on weighted networks such as the world-

wide airport network [3] and the scientific collaboration network of condensed-matter

physicists based on the Los Alamos Archive cond-mat [149, 147, 148]. They define

the weighted clustering coefficient of a node, a generalization of the quantity which

takes the weighted nature of links into account. They found both networks to be
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hierarchical, based on both the traditional and generalized measure of clustering.

Interestingly, weighted clustering coefficients of airports were generally larger than

the standard measure, especially for larger nodes, indicating that although airport

hubs have a wide variety of connections, their high-traffic links form a more in-

terconnected set (the rich-club phenomenon). The two clustering measures of the

collaboration graph are almost identical up to about 20 collaborators, indicating the

presence of stable research groups with a well-defined average intensity of collabo-

ration. Hubs of the scientific world, however, show similar signs of forming clubs as

airports: collaborators of a hub are much more frequent among a more connected

subset of researchers who, taking into account the networks’s assortative nature,

tend to be hubs as well.

7.2 Hierarchical Modularity as a Paradigm for Biological Organization

Modularity is not an exclusive property of the metabolism. Indeed, the protein

interaction network of S. cerevisae [223], based on four independent databases [220,

219, 138, 139, 196, 96], the conformational spaces of RNA [218] and the genetic

regulatory network also reflect a modular architecture.

The appearance of hierarchical modularity in biological networks supports the

assumption that evolution acts on many levels. The accumulation of local changes,

affecting the small highly integrated modules, slowly impacts the larger, less inte-

grated modules as well. Thus, evolution might act in self-similar fashion, copying

and reusing existing modules to further increase the organism’s complexity. Espe-

cially in the face of eukaryotic evolution, this network based framework might be

suitable to describe the explosion of complexity in the development of the single-

celled S. cerevisiae toward the multicellular H. sapiens. Cellular functions like

information storage, processing and execution are carried out by the genome, tran-
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scriptome, proteome and metabolome. All these cellular functions can be described

by networks of various heterogeneous components. One way to visualize the complex

relationships between these components is to organize them into a simple complexity

pyramid shown in figure 7.1 [159], in which various molecular components - genes,

RNAs, proteins and metabolites - organize themselves into recurrent patterns such

as metabolic pathways and genetic regulatory motifs. In turn, motifs and pathways

are seamlessly integrated to form functional modules which are responsible for dis-

tinct cellular functions [89]. These modules are nested in a hierarchical fashion and

define the cell’s large-scale organization.
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Our present knowledge about the architecture of biological networks emphasizes

two major aspects:

1. Discrete cellular functions are mediated with the aid of distinct albeit often

blurred modules;

2. Network integrity is assured by a handful of highly connected nodes, mak-

ing networks robust against random failures but exceedingly vulnerable to

targeted attacks.

These features explain the observation that many mutations have little or no

phenotypic effect [204], which appears to be consistent with the presence of genes

that either cannot propagate their failure or whose function can be replaced by other

components of the network. The presence of genes that integrate multiple signals

and trigger widespread changes upon their failure proves the crucial role of highly

connected genes. For example, the tumor-suppressor gene p53 has been identified

as a highly connected and thus crucial node which, once mutated, severely jeopar-

dizes genome stability and integration of signals related to the control of cell-cycle

and cell death [203, 119]. Emphasizing its crucial role, dysfunctional p53 proteins

are involved in more than half of all human cancer phenotypes. With the increas-

ing ability to identify and collect protein-protein interactions the determination of

modules and highly connected proteins will become a major issue in the fast and

effective identification of potential drug targets. The recent progress in biological

networks has successively uncovered the skeleton and organization of networks, of-

fering important insights about the assembly and functionality of components and

subnetworks. In future, we will need to go several steps further addressing the

dynamic aspects of various cellular networks.
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7.3 Conclusions

The fact that many large networks are scale free is now well established. It is also

clear that most networks have a modular topology, quantified by the high clustering

coefficient they display. Such modules have been proposed to be a fundamental

feature of biological systems [89, 174], but have been discussed in the context of

the WWW [127, 76] and social networks as well [86, 210]. Hierarchical topology

offers a new avenue for bringing these two concepts under a single roof, giving a

precise and quantitative meaning for the network’s modularity. It indicates that we

should not think of modularity as the coexistence of relatively independent groups

of nodes. Instead, we have many small clusters, that are densely interconnected.

These combine to form larger, but less cohesive groups, which combine again to

form even larger and even less interconnected clusters. This self-similar nesting of

different groups or modules into each other forces a strict fine structure on real

networks.

The presence of such a hierarchical architecture reinterprets the role of the hubs

in complex networks. Hubs, the highly connected nodes at the tail of the power

law degree distribution, are known to play a key role in keeping complex networks

together, playing a crucial role from the robustness of the network [14, 44] to the

spread of viruses in scale free networks [165]. Measurements on many real networks

indicate that the clustering coefficient characterizing each node decreases with the

degree. This implies that while the small nodes are part of highly cohesive, densely

interlinked clusters, the hubs are not, as their neighbors have a small chance of

linking to each other. Therefore, the hubs play the important role of bridging the

many small communities of clusters into a single, integrated network.

While it is difficult to identify universal characteristics from single examples,

once they are uncovered, they offer strong support for an emerging theme: networks
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in nature are far from random, but evolve following robust self-organizing principles

and evolutionary laws that cross disciplinary boundaries. The results reviewed here

represent only one chapter in their story; systematic data driven studies focusing

on the topology and evolution of real networks could fundamentally change how we

approach the complex world around us.
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[25] A. Barrat, M. Barthélemy, R. Pastor-Satorras and A. Vespignani, The archi-
tecture of complex weighted networks. Proc. Nat. Acad. Sci., 101: 3747–3752
(2004).

[26] P. S. Bearman, J. Moody and K. Stovel, Chains of affection: The structure of
adolescent romantic and sexual networks. Preprint, Department of Sociology,
Columbia University (2002).

[27] G. Bianconi and A.-L. Barabási, Competition and multiscaling in evolving
networks. Europhys. Lett., 54: 436 (2001).

[28] G. Bianconi and A.-L. Barabási, Bose-Einstein condensation in complex net-
works. Phys. Rev. Lett., 86: 5632 (2001).

[29] B. Bollobás, Random Graphs . Academic Press, London (1985).

[30] B. Bollobás and O. Riordan, Mathematical results on scale-free random
graphs. In S. Bornholdt and H. G. Schuster, editors, Handbook of Graphs
and Networks , Wiley-VCH, Berlin (2002).

127



[31] B. Bollobás, O. Riordan, J. Spencer and G. Tusnády, The degree sequence of
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Peredo, F. Sánchez-Solano, E. Pérez-Rueda, C. Bonavides-Mart́ınez and
J. Collado-Vides, RegulonDB (version 3.2): transcriptional regulation and
operon organization in Escherichia coli K-12. Nucleic Acids Res., 29: 72–74
(2001).

[181] C. H. Schilling, D. Letscher and B. O. Palsson, Theory for the systemic defi-
nition of metabolic pathways and their use in interpreting metabolic function
from a pathway-oriented perspective. J. Theor. Biol., 203: 229 (2000).

137



[182] A. Schneeberger, C. H. Mercer, S. A. J. Gregson, N. M. Ferguson, C. A. Nya-
mukapa, R. M. Anderson, A. M. Johnson and G. P. Garnett, Scale-free net-
works and sexually transmitted diseases – A description of observed patterns
of sexual contacts in Britain and Zimbabwe. Sexually Transmitted Diseases ,
31: 380–387 (2004).

[183] H. G. Schuster, Complex Adaptive Systems . Scator Verlag, Saarbruskey, Ger-
many (2002).

[184] B. Schwikowski, P. Uetz and S. Fields, A network of protein-protein interac-
tions in yeast. Nature Biotechn., 18: 257–1261 (2000).

[185] P. O. Seglen, The skewness of science. J. Amer. Soc. Inform. Sci., 43: 628–638
(1992).

[186] P. Sen, S. Dasgupta, A. Chatterjee, P. A. Sreeram, G. Mukherjee and S. S.
Manna, Small-world properties of the indian railway network. Los Alamos
Archive, cond-mat/0208535 (2002).
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