The complexity of cellular networks

Warning: Statistical physics. It only works on average.

http://regan.med.harvard.edu/CVBR-course.php

1. Meet complex networks

- Complexity and networks -

Complexity in:

- topology of interactions
- time evolution of the structure
- dynamics on the structure

- Meet these networks -

Society

Friendships, sexual contacts
Co-authorship, citations
Movie actors, business
Co-authorship, citations
Movie actors, business

Communication

- InternetWorld Wide Web
- Phone call networks

You mean to say you are going to talk about ALL these? In GENERAL?

12.00 CST

Biology

Genetic regulation Protein-protein interactions

• Metabolic pathways

Food webs webs webs

FERRE-DOXIN (ox.)

Airline routes
Word webs
Power grid

Smarter POWER GRID

- How it all begun -Königsberg, capital of East Prussia 1730's, Euler's time **Pregel River**

- Social science knows we network -

Stanley Milgram's experiment, Harvard, 1967

64 of the 296 letters made it
average path length : 5.5 or 6

- random individuals in starting towns
- information packet:

target name, occupation and city (about study, instructions)

- if you know target, mail package to target
- if not: mail it to a

personal aqquaintance you think might know him

 send back trancking postcard

> Six degrees of separation

– Paul Erdős rethinks graph theory – 1950's: the Erdős-Rényi Random Network

$$P(k) \approx e^{-pN} \frac{(pN)^k}{k!}$$
$$< d >_{i,j} \sim \log(N)$$

- statistical approach
- the **null model** of large real networks
- **threshold** probability value:
 - percolation transition <k>=1
 - one giant connected component
 - Poisson degree distribution

SMALL WORLD

- Birth of modern complex networks -

OK: birth of our modern interest in them

1998 Watts and Strogatz: Small World Networks

1999 Barabasi and Albert: Scale-Free Networks

- Birth of modern complex networks -

OK: birth of our modern interest in them

1998 Watts and Strogatz: Small World Networks

0.01

р

0.1

0

0.0001

0.001

1999 Barabasi and Albert: Scale-Free Networks

- Explosion of data -

Business ties in US biotech-industry

Business ties in US biotech-industry

– In biology, too –

Metabolic network, E. Coli

Protein Interaction network, Yeast

Survival signaling in large granular lymphocye leukemia

You mean to say you are going to talk about ALL these? In GENERAL?

STRUCTURAL UNIVERSALITIES

EVOLUTION OF STRUCTURE

WHAT DO THEY DO? (and how?)

- Let's use an example -

D

R

А

- => degree properties
- => paths and their statistics
- => clustering, motifs
- => degree mixing patterns
- => communities, hierarchy, fractals

- Directed graph (one-way reactions)
- Weighted graph (rates, concentrations)

• **Bipartite graph** (both metabolites and reactions are network nodes)

- Degree distribution and its claim to fame -

- Rich gets richer -

1999, Barabasi & Albert Scale-Free Model

 Networks grow
 New nodes pick popular old nodes: preferential attachment

- ➡ measures powerlaw
- builds model: cited papers get more citations

Statistical physics gets its hands on scale-free models -

- Inear preferential attachment: critical for powerlaws
- fitness-based attachment models: math similar to BEC
- other growth models that result in preff. attachment
- configuration model: ensemble of all networks with a given degree distribution
 - scale-free networks are ultra-small: <d> ~ log (log N)
 - vanishing number of triangles
- physical constraints on link length
 - large cost of length forbids hubs
 - complex models for spatially embedded

scale-free networks

- Paths in a small world -

The Kevin Bacon game

Clint

Howard

The Erdős Number

Gene Patterson

Erdős has a Bacon number of 4

The story of a wandering mathematician obsessed with unsolved problems.

- The clustering coefficient and motifs -

• <u>Motif</u>: pattern of connection between any triplet / quadruplet /...

- Modular organization -

- Self similarity and fratal networks -

- Overlapping communities -

- Overlapping communities -

2. Dynamics on complex networks

April 13 12 PM