
The complexity of 
cellular networks

Warning: Statistical physics. 
It only works on average.

http://regan.med.harvard.edu/CVBR-course.php



1. Meet complex networks

System as a whole:
NETWORK

Complexity in:
• topology of interactions
• time evolution of the structure
• dynamics on the structure

- Complexity and networks - 

• atoms, particles
• spins, oscillators
• cells, DNA, proteins 

Many different
components

A variety of
interactions

• gravity
• electromagnetism 
• genetic regulation
• signaling



- Meet these networks - 

Days of Thunder  
Far and Away     
Eyes Wide Shut 

• Friendships, sexual contacts
• Co-authorship, citations 
• Movie actors, business
• Co-authorship, citations 
• Movie actors, business

Society Communication

• Internet
• World Wide Web
• Phone call networks

• Genetic regulation
• Protein-protein interactions
• Metabolic pathways
• Food webs
• Neuron networks

Biology And more…

• Airline routes
• Word webs
• Power grid

You mean to say 
you are going to talk 
about ALL these? In 

GENERAL?



- How it all begun - 
Königsberg, capital of East Prussia 1730’s, Euler’s time

Pregel River



- How it all begun - 
Königsberg, capital of East Prussia

Problem: find a walk to cross 
all bridges once, but only once.

Solution: a general theorem.
• Eulerian paths only exist on 
graphs with no odd degree 
nodes, or exactly 2 odd 
degree nodes.
• => none for old Königsberg

1730’s, Euler’s time

Graph theory 
+ Topology

Pregel RiverEuler:
• land: nodes
• bridges: graph



- Social science knows we network - 
Stanley Milgram’s experiment, Harvard, 1967

START END

• random individuals in 
starting towns
• information packet: 
target name, occupation 
and city (about study, 
instructions)
• if you know target, 
mail package to target
• if not: mail it to a 
personal aqquaintance 
you think might know 
him
• send back trancking 
postcard

• 64 of the 296 letters made it
• average path length :  5.5 or 6

Six 
degrees of 
separation



- Paul Erdős rethinks graph theory - 
1950’s: the Erdős-Rényi Random Network

p = 1/6 • statistical approach
• the null model of large real 
networks
• threshold probability value:
➡ percolation transition <k>=1
➡ one giant connected 
component
➡ Poisson degree distribution
➡ SMALL WORLD

< d >i,j ∼ log(N)



• WWW, U Notre Dame

- Birth of modern complex networks - 
OK: birth of our modern interest in them

1998 Watts and Strogatz: 
Small World Networks
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Figure 1 (a) Schematic of the Watts-Strogatz model. (b) Normalized average shortest
path length L and clustering coefficient C as a function of the random rewiring parameter
p for the Watts-Strogatz model with N = 1000, and 〈k〉 = 10.

small-world networks2 to refer to networks in this class, in reference to
the early work of Pool & Kochen (1978), and subsequent experiments of
Milgram and colleagues (Korte & Milgram 1970; Milgram 1967; Travers &
Milgram 1969).

6. Because the conditions required for any network to belong to the small-
world class (some nontrivial local order, combined with just a small fraction
of long-range, random shortcuts) were relatively weak, Watts & Strogatz
(1998) predicted that many real-world networks—whether social networks

2Watts & Strogatz were not, in fact, the first to use the term small-world networks: that
distinction belongs to Eugene Garfield (1979), who used it in a review article on the topic
of small-world research. The term does not appear to have caught on, however, until Watts
& Strogatz defined it to refer to networks with high local clustering and short global path
lengths.
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• high clustering
• short average paths

• US power grid
• Movie actors
• neural network of 
C. Elegans

1999 Barabasi and Albert: 
Scale-Free Networks



- Birth of modern complex networks - 
OK: birth of our modern interest in them

1998 Watts and Strogatz: 
Small World Networks

3 Jun 2004 17:3 AR AR219-SO30-12.tex AR219-SO30-12.sgm LaTeX2e(2002/01/18) P1: IBC

THE NEW SCIENCE OF NETWORKS 245

Figure 1 (a) Schematic of the Watts-Strogatz model. (b) Normalized average shortest
path length L and clustering coefficient C as a function of the random rewiring parameter
p for the Watts-Strogatz model with N = 1000, and 〈k〉 = 10.

small-world networks2 to refer to networks in this class, in reference to
the early work of Pool & Kochen (1978), and subsequent experiments of
Milgram and colleagues (Korte & Milgram 1970; Milgram 1967; Travers &
Milgram 1969).

6. Because the conditions required for any network to belong to the small-
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• high clustering
• short average paths

• US power grid
• Movie actors
• neural network of 
C. Elegans

1999 Barabasi and Albert: 
Scale-Free Networks

• BA model 
➡ growth
➡ preferential 
attachment

• power law degree 
distribution!



- Explosion of data - 

• Internet



Business ties in US biotech-industry



Business ties in US biotech-industry



- In biology, too - 

Metabolic network, 
E. Coli

Protein Interaction 
network, Yeast



indicators of cell fate. Because of the unknown etiology of
T-LGL leukemia (2), we used ‘‘Stimuli’’ as a node to indicate
antigen stimulation (12). This network contains 58 nodes and 123
edges. The biological description of the T-LGL survival signaling
network is given in SI Text.

Translating the T-LGL Survival Signaling Network into a Predictive,
Discrete, Dynamic Model. To understand the dynamics of signaling
abnormalities in T-LGL leukemia, we translated the T-LGL
survival signaling network into a Boolean model. Each network
node was described by one of two possible states: ON or OFF.
The ON state means the production of a small molecule, the
production and translation of a transcript, or the activation of a
protein/process whereas the OFF state means the absence of a
small molecule or transcript or the inhibition of a protein/
process. The regulation of each component in the network was
described by using the Boolean logical operators OR, AND, and
NOT (see Table S4). OR represents the combined effect of
independent upstream regulators on a downstream node
whereas AND indicates the conditional dependency of upstream
regulators to achieve a downstream effect. NOT represents the
effect of inhibitory regulators and can be combined with acti-
vating regulations by using either OR or AND. The rules were
derived from the regulatory relationships reflected in the net-
work and from the literature. The detailed justification of the
logical rules for all nodes in the network is provided in SI Text.
As in the biological system, there is a time lag between the state
change of the regulators and the state change of the targets. The
kinetics of signal propagation is rarely known from experiments.
Thus, we used an asynchronous updating algorithm (10, 11) that
samples differences in the speed of signal propagation. The
detailed algorithm is described in SI Text.

To reproduce how a population of cells responds to the same
signal and to simulate cell-to-cell variability, we performed
multiple simulations with the same initial conditions but differ-
ent updating orders (i.e., different timing). The model was
allowed to update for multiple rounds until the node Apoptosis
became ON in all simulations (recapitulating the death of all
CTL) or stabilized in the OFF state in a fraction of simulations
(recapitulating the stabilization of the long-term surviving CTL
population). The state of Stimuli was set to ON at the beginning
of every simulation, recapitulating the activation of CTL by
antigen. The states of the other nodes were set according to their

states in resting T cells, as described in the SI Text. At the end
of the simulation, if the state of a node stabilized at ON even
though it was OFF at the beginning of the simulation, we
consider it as constitutively active. If the state of a node
stabilized at OFF even though it was in the ON state at the
beginning of the simulation, or it was experimentally shown to
be active after normal CTL activation, we consider it as down-
regulated/inhibited. During simulations, the state of a node can
be fixed to reproduce signaling perturbations.

Constitutive Presence of IL-15 and PDGF Is Predicted to Be Sufficient
to Induce All of the Known Signaling Abnormalities in Leukemic T-LGL.
Zambello et al. (13) has demonstrated the presence of mem-
brane-bound IL-15 on leukemic LGL, suggesting a role of IL-15
in the pathogenesis of this disease. In the course of studying
constitutive cytokine production in LGL leukemia (14), we used
a protein array as an experimental method. Using this array, we
had found high levels of PDGF in LGL leukemia sera (unpub-
lished observation). PDGF exists in the form of homodimers or
heterodimers of two polypeptides: PDGF-A and PDGF-B (15).
In the current study, we examined the level of PDGF-BB level
in the sera of 22 T-LGL leukemia patients and 39 healthy donors
and found that PDGF-BB was significantly higher in patient
serum compared with normal (P ! 0.005) (Fig. 2A). We
subsequently incorporated this deregulation into the network
model.

To investigate signaling abnormalities underlying long-term
survival of leukemic T-LGL, we first tested whether our model
could reproduce the uncoupling of CTL activation and AICD by
using all known deregulations (summarized in Table S5). We did
not observe the activation of the node Apoptosis in any simu-
lation. Second, we probed whether all of the deregulations have
to be individually initiated or whether a subset of them can cause
the others. The effect of a single signaling perturbation can be
identified by keeping the state of the corresponding node
according to its deregulation and tracking the states of other
nodes until a stable (time-independent) state is obtained. IL-15,
PDGF, and Stimuli are three nodes that have been suggested to
be abnormal in T-LGL leukemia without known upstream
regulators in the T-LGL survival-signaling network. To recapit-
ulate the effect of their deregulations without masking the effect
of the perturbation tested, the states of IL-15, PDGF, and
Stimuli were randomly set at ON or OFF at every round of

Fig. 1. The T-LGL survival signaling network. Node and edge color represents the current knowledge of the signaling abnormalities in T-LGL leukemia.
Up-regulated or constitutively active nodes are in red, down-regulated or inhibited nodes are in green, nodes that have been suggested to be deregulated (either
up-regulation or down-regulation) are in blue, and the states of white nodes are unknown or unchanged compared with normal. Blue edge indicates activation
and red edge indicates inhibition. The shape of the nodes indicates the cellular location: rectangular indicates intracellular components, ellipse indicates
extracellular components, and diamond indicates receptors. Conceptual nodes (Stimuli, Cytoskeleton signaling, Proliferation, and Apoptosis) are labeled orange.
The full names of the node labels are provided in Table S3.

Zhang et al. PNAS ! October 21, 2008 ! vol. 105 ! no. 42 ! 16309
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Protein folding 
pathways
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Food webs



You mean to say 
you are going to talk 
about ALL these? In 

GENERAL?

STRUCTURAL UNIVERSALITIES

EVOLUTION OF STRUCTURE

WHAT DO THEY DO? (and how?)



A + B      > C + D

A C

B D

- Let’s use an example - 
• Simple graph (metabolites - nodes;
reactions - links)

=> degree properties
=> paths and their statistics
=> clustering, motifs
=> degree mixing patterns
=> communities, hierarchy, fractals 

• Bipartite graph (both metabolites 
and reactions are network nodes)

• Weighted graph (rates, concentrations)

• Directed graph (one-way reactions)



- Degree distribution and its claim to fame - 
Homogeneous 

graph

Meet the hubs



- Rich gets richer - 

1999, Barabasi & Albert Scale-Free Model

1965, Price, scietific citation network
➡ measures powerlaw
➡ builds model: cited papers get 

more citations

• Networks grow
• New nodes pick popular old nodes: 

 preferential attachment



- Statistical physics gets its hands 
on scale-free models - 

• linear preferential attachment: critical for powerlaws
• fitness-based attachment models: math similar to BEC
• other growth models that result in preff. attachment
• configuration model: ensemble of all networks with a 
given degree distribution
➡ scale-free networks are ultra-small: <d> ~ log (log N)
➡ vanishing number of triangles

• physical constraints on link length
➡ large cost of length forbids hubs
➡ complex models for spatially embedded             
scale-free networks



- Paths in a small world - 
The Kevin Bacon 

game
The Erdős 
Number

Gene 
Patterson

Clint 
Howard

John 
Turturro

Erdős has a Bacon number of 4



- Centrality, or betweenness - 

• Number of shortest paths 
through a node or link
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Cl concentrations in the Sajama ice core, and to
a number of other pedological and geomorpho-
logical features indicative of long-term dry cli-
mates (8, 11–14, 18). This decline in human
activity around the Altiplano paleolakes is seen
in most caves, with early and late occupations
separated by largely sterile mid-Holocene sed-
iments. However, a few sites, including the
caves of Tulan-67 and Tulan-68, show that
people did not completely disappear from the
area. All of the sites of sporadic occupation
are located near wetlands in valleys, near
large springs, or where lakes turned into wet-
lands and subsistence resources were locally
still available despite a generally arid climate
(7, 8, 19, 20).

Archaeological data from surrounding ar-
eas suggest that the Silencio Arqueológico
applies best to the most arid areas of the
central Andes, where aridity thresholds for
early societies were critical. In contrast, a
weaker expression is to be expected in the
more humid highlands of northern Chile
(north of 20°S, such as Salar Huasco) and
Peru (21). In northwest Argentina, the Silen-
cio Arqueológico is found in four of the six
known caves (22) [see review in (23)]. It is
also found on the coast of Peru in sites that
are associated with ephemeral streams (24).
The southern limit in Chile and northwest
Argentina has yet to be explored.
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5. L. Núñez, M. Grosjean, I. Cartajena, in Interhemispher-
ic Climate Linkages, V. Markgraf, Ed. (Academic Press,
San Diego, CA 2001), pp. 105–117.

6. M. A. Geyh, M. Grosjean, L. Núñez, U. Schotterer,
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Network Motifs: Simple Building
Blocks of Complex Networks

R. Milo,1 S. Shen-Orr,1 S. Itzkovitz,1 N. Kashtan,1 D. Chklovskii,2

U. Alon1*

Complex networks are studied across many fields of science. To uncover their
structural design principles, we defined “network motifs,” patterns of inter-
connections occurring in complex networks at numbers that are significantly
higher than those in randomized networks. We found such motifs in networks
from biochemistry, neurobiology, ecology, and engineering. The motifs shared
by ecological food webs were distinct from the motifs shared by the genetic
networks of Escherichia coli and Saccharomyces cerevisiae or from those found
in the World Wide Web. Similar motifs were found in networks that perform
information processing, even though they describe elements as different as
biomolecules within a cell and synaptic connections between neurons in Cae-
norhabditis elegans. Motifs may thus define universal classes of networks. This
approach may uncover the basic building blocks of most networks.

Many of the complex networks that occur in
nature have been shown to share global statis-
tical features (1–10). These include the “small
world” property (1–9) of short paths between
any two nodes and highly clustered connec-
tions. In addition, in many natural networks,
there are a few nodes with many more connec-
tions than the average node has. In these types

of networks, termed “scale-free networks” (4,
6), the fraction of nodes having k edges, p(k),
decays as a power law p(k) ! k–" (where " is
often between 2 and 3). To go beyond these
global features would require an understanding
of the basic structural elements particular to
each class of networks (9). To do this, we
developed an algorithm for detecting network
motifs: recurring, significant patterns of inter-
connections. A detailed application to a gene
regulation network has been presented (11).
Related methods were used to test hypotheses
on social networks (12, 13). Here we generalize
this approach to virtually any type of connec-
tivity graph and find the striking appearance of

1Departments of Physics of Complex Systems and
Molecular Cell Biology, Weizmann Institute of Sci-
ence, Rehovot, Israel 76100. 2Cold Spring Harbor Lab-
oratory, Cold Spring Harbor, NY 11724, USA.

*To whom correspondence should be addressed. E-
mail: urialon@weizmann.ac.il

Fig. 1. (A) Examples
of interactions repre-
sented by directed
edges between nodes
in some of the net-
works used for the
present study. These
networks go from the
scale of biomolecules
(transcription factor
protein X binds regu-
latory DNA regions
of a gene to regulate
the production rate
of protein Y),
through cells (neuron
X is synaptically con-
nected to neuron Y),
to organisms (X
feeds on Y). (B) All 13 types of three-node connected subgraphs.
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classes), and edges represent synaptic connec-
tions between the neurons. We found the feed-
forward loop motif in agreement with anatomi-
cal observations of triangular connectivity struc-
tures (24). The four-node motifs include the
bi-fan and the bi-parallel (Table 1). Two of
these motifs (feedforward loop and bi-fan) were

also found in the transcriptional gene regulation
networks. This similarity in motifs may point to
a fundamental similarity in the design con-
straints of the two types of networks. Both net-
works function to carry information from sen-
sory components (sensory neurons/transcription
factors regulated by biochemical signals) to ef-

fectors (motor neurons/structural genes). The
feedforward loop motif common to both types
of networks may play a functional role in infor-
mation processing. One possible function of this
circuit is to activate output only if the input
signal is persistent and to allow a rapid deacti-
vation when the input goes off (11). Indeed,
many of the input nodes in the neural feedfor-
ward loops are sensory neurons, which may
require this type of information processing
to reject transient input fluctuations that are
inherent in a variable or noisy environment.

We also studied several technological net-
works. We analyzed the ISCAS89 benchmark
set of sequential logic electronic circuits (7, 25).
The nodes in these circuits represent logic gates
and flip-flops. These nodes are linked by direct-
ed edges. We found that the motifs separate the
circuits into classes that correspond to the cir-
cuit’s functional description. In Table 1, we
present two classes, consisting of five forward-
logic chips and three digital fractional multipli-
ers. The digital fractional multipliers share three
motifs, including three- and four-node feedback
loops. The forward logic chips share the feed-
forward loop, bi-fan, and bi-parallel motifs,
which are similar to the motifs found in the
genetic and neuronal information-processing
networks. We found a different set of motifs in
a network of directed hyperlinks between
World Wide Web pages within a single domain
(4). The World Wide Web motifs may reflect a
design aimed at short paths between related
pages. Application of our approach to nondi-
rected networks shows distinct sets of motifs in
networks of protein interactions and Internet
router connections (18).

None of the network motifs shared by the
food webs matched the motifs found in the gene
regulation networks or the World Wide Web.
Only one of the food web consensus motifs also
appeared in the neuronal network. Different
motif sets were found in electronic circuits with
different functions. This suggests that motifs
can define broad classes of networks, each with
specific types of elementary structures. The
motifs reflect the underlying processes that gen-
erated each type of network; for example, food
webs evolve to allow a flow of energy from the
bottom to the top of food chains, whereas gene
regulation and neuron networks evolve to pro-
cess information. Information processing seems
to give rise to significantly different structures
than does energy flow.

We further characterized the statistical sig-
nificance of the motifs as a function of network
size, by considering pieces of various sizes
(subnetworks) of the full network. The concen-
tration of motifs in the subnetworks is about the
same as that in the full network (Fig. 3). In
contrast, the concentration of the corresponding
subgraphs in the randomized versions of the
subnetworks decreases sharply with size. In
analogy with statistical physics, the number of
appearances of each motif in the real networks

Table 1. Network motifs found in biological and technological networks. The numbers of nodes and edges
for each network are shown. For each motif, the numbers of appearances in the real network (Nreal) and
in the randomized networks (Nrand! SD, all values rounded) (17, 18) are shown. The P value of all motifs
is P " 0.01, as determined by comparison to 1000 randomized networks (100 in the case of the World
Wide Web). As a qualitative measure of statistical significance, the Z score # (Nreal – Nrand)/SD is shown.
NS, not significant. Shown are motifs that occur at least U # 4 times with completely different sets of
nodes. The networks are as follows (18): transcription interactions between regulatory proteins and genes
in the bacterium E. coli (11) and the yeast S. cerevisiae (20); synaptic connections between neurons in
C. elegans, including neurons connected by at least five synapses (24); trophic interactions in ecological
food webs (22), representing pelagic and benthic species (Little Rock Lake), birds, fishes, invertebrates
(Ythan Estuary), primarily larger fishes (Chesapeake Bay), lizards (St. Martin Island), primarily inverte-
brates (Skipwith Pond), pelagic lake species (Bridge Brook Lake), and diverse desert taxa (Coachella
Valley); electronic sequential logic circuits parsed from the ISCAS89 benchmark set (7, 25), where nodes
represent logic gates and flip-flops (presented are all five partial scans of forward-logic chips and three
digital fractional multipliers in the benchmark set); and World Wide Web hyperlinks between Web pages
in a single domain (4) (only three-node motifs are shown). e, multiplied by the power of 10 (e.g., 1.46e6
# 1.46$ 106).

*Has additional four-node motif: (X3Z, W; Y3Z, W; Z3W), Nreal# 150, Nrand# 85! 15, Z# 4. †Has additional
four-node motif: (X3Y, Z; Y3Z; Z3W), Nreal# 204, Nrand# 80! 20, Z# 6. The three-node pattern (X3Y, Z; Y3Z;
Z3Y) also occurs significantly more than at random. It is not a motif by the present definition because it does not
appear with completely distinct sets of nodes more than U # 4 times. ‡Has additional four-node motif: (X3Y;
Y3Z, W; Z3X; W3X), Nreal # 914, Nrand # 500 ! 70, Z # 6. §Has two additional three-node motifs: (X3Y, Z;
Y3Z; Z3Y), Nreal # 3e5, Nrand # 1.4e3 ! 6e1, Z # 6000, and (X3Y, Z; Y3Z), Nreal # 5e5, Nrand # 9e4 ! 1.5e3,
Z # 250.

Network Nodes Edges Nreal Nrand ± SD Z score Nreal Nrand ± SD Z score Nreal Nrand ± SD Z score

Gene regulation

(transcription)

            X

            Y

            Z

Feed-

forward

loop

    X           Y

     Z         W

Bi-fan

E. coli   424    519 40   7 ± 3 10   203   47 ± 12 13

S. cerevisiae* 685 1,052 70 11 ± 4 14 1812 300 ± 40 41

Neurons              X

             Y

             Z

Feed-

forward

loop

    X           Y

     Z          W

Bi-fan           X

  Y              Z

          W

Bi-

parallel

 C. elegans† 252 509 125 90 ± 10 3.7 127 55 ± 13 5.3 227 35 ± 10 20

Food webs             X

            Y

             Z

Three

chain

          X

  Y              Z

         W

Bi-

parallel

Little Rock 92 984 3219 3120 ± 50 2.1 7295 2220 ± 210 25

Ythan 83 391 1182 1020 ± 20 7.2 1357 230 ± 50 23

St. Martin 42 205   469   450 ± 10 NS   382 130 ± 20 12

Chesapeake 31   67     80     82 ± 4       NS     26     5 ± 2      8

Coachella 29 243   279   235 ± 12 3.6   181   80 ± 20   5

Skipwith 25 189   184   150 ± 7 5.5   397   80 ± 25 13

 B. Brook 25 104   181   130 ± 7 7.4   267   30 ± 7    32

Electronic circuits

(forward logic chips)

             X

             Y

             Z

Feed-

forward

loop

Bi-fan           X

  Y              Z

          W

Bi-

parallel

s15850 10,383 14,240 424   2 ± 2 285 1040 1 ± 1 1200 480 2 ± 1 335

s38584 20,717 34,204 413 10 ± 3 120 1739 6 ± 2   800 711 9 ± 2 320

s38417 23,843 33,661 612   3 ± 2 400 2404 1 ± 1 2550 531 2 ± 2 340

s9234   5,844   8,197 211   2 ± 1 140   754 1 ± 1 1050 209 1 ± 1 200

s13207   8,651 11,831 403   2 ± 1 225 4445 1 ± 1 4950 264 2 ± 1 200

Electronic circuits

(digital fractional multipliers)

         X

Y                Z

Three-

node

feedback

loop

Bi-fan      X            Y

     Z             W

Four-

node

feedback

loop

s208 122 189 10 1 ± 1   9   4 1 ± 1   3.8   5 1 ± 1   5

s420 252 399 20 1 ± 1 18 10 1 ± 1 10 11 1 ± 1 11

s838‡ 512 819 40 1 ± 1 38 22 1 ± 1 20 23 1 ± 1 25

World Wide Web              X

             Y

             Z

Feedback

with two

mutual

dyads

         X

Y                Z

Fully

connected

triad

        X

Y                Z

Uplinked

mutual

dyad

nd.edu§ 325,729 1.46e6 1.1e5 2e3 ± 1e2 800 6.8e6 5e4±4e2 15,000 1.2e6 1e4 ± 2e2 5000

    X           Y

     Z         W

    X           Y

     Z         W
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• Assortative networks
➡ social networks
➡ the airport network

• Disassortative networks
➡ biological networks
➡ communication



- Modular organization - 
6

modularity Q
network size n GN CNM DA this paper
karate 34 0.401 0.381 0.419 0.419
jazz musicians 198 0.405 0.439 0.445 0.442
metabolic 453 0.403 0.402 0.434 0.435
email 1133 0.532 0.494 0.574 0.572
key signing 10 680 0.816 0.733 0.846 0.855
physicists 27 519 – 0.668 0.679 0.723

TABLE I: Comparison of modularities for the network divi-
sions found by the algorithm described here and three other
previously published methods as described in the text, for
six networks of varying sizes. The networks are, in order, the
karate club network of Zachary [23], the network of collabora-
tions between early jazz musicians of Gleiser and Danon [27],
a metabolic network for the nematode C. elegans [28], a net-
work of email contacts between students [29], a trust net-
work of mutual signing of cryptography keys [30], and a coau-
thorship network of scientists working on condensed matter
physics [31]. No modularity figure is given for the last network
with the GN algorithm because the slow O(n3) operation of
the algorithm prevents its application to such large systems.

of US politics.
The first example is a network of books on pol-

itics, compiled by V. Krebs (unpublished, but see
www.orgnet.com). In this network the vertices represent
105 recent books on American politics bought from the
on-line bookseller Amazon.com, and edges join pairs of
books that are frequently purchased by the same buyer.
Books were divided (by the present author) according to
their stated or apparent political alignment—liberal or
conservative—except for a small number of books that
were explicitly bipartisan or centrist, or had no clear af-
filiation.

Figure 3 shows the result of feeding this network
through our algorithm. The algorithm finds four com-
munities of vertices, denoted by the dotted lines in the
figure. As we can see, one of these communities consists
almost entirely of liberal books and one almost entirely of
conservative books. Most of the centrist books fall in the
two remaining communities. Thus these books appear
to form “communities” of copurchasing that align closely
with political views, a result that encourages us to believe
that our algorithm is capable of extracting meaningful
results from raw network data. It is particularly inter-
esting to note that the centrist books belong to their own
communities and are not, in most cases, merely lumped
in with the liberals or conservatives; this may indicate
that political moderates form their own community of
purchasing.

For our second example, we consider a network of po-
litical commentary web sites, also called “weblogs” or
“blogs,” compiled from on-line directories by Adamic and
Glance [32], who also assigned a political alignment, con-
servative or liberal, to each blog based on content. The
1225 vertices in the network studied here correspond to
the 1225 blogs in the largest component of Adamic and
Glance’s network, and undirected edges connect vertices

FIG. 3: Krebs’ network of books on American politics. Ver-
tices represent books and edges join books frequently pur-
chased by the same readers. Dotted lines divide the four
communities found by our algorithm and shapes represent
the political alignment of the books: circles (blue) are liberal,
squares (red) are conservative, triangles (purple) are centrist
or unaligned.

if either of the corresponding blogs contained a hyperlink
to the other on its front page. On feeding this network
through our algorithm we discover that the network di-
vides cleanly into conservative and liberal communities
and, remarkably, the optimal modularity found is for a
division into just two communities. One community has
638 vertices of which 620 (97%) represent conservative
blogs. The other has 587 vertices of which 548 (93%)
represent liberal blogs. The algorithm found no division
of either of these two groups that gives any positive con-
tribution to the modularity; these groups are “indivisi-
ble” in the sense defined in this paper. This behavior is
unique in our experience among networks of this size and
is perhaps a testament not only to the widely noted po-
larization of the current political landscape in the United
States but also to the strong cohesion of the two factions.

Finally, we mention that as well as being accurate our
method is also fast. It can be shown that the run-
ning time of the algorithm scales with system size as
O(n2 log n) for the typical case of a sparse graph. This is
considerably better than the Ø(n3) running time of the
betweenness algorithm [10], and slightly better than the
Ø(n2 log2 n) of the extremal optimization algorithm [19].
It is not as good as the Ø(n log2 n) for the greedy al-
gorithm of [26], but our results are of far better quality
than those for the greedy algorithm. In practice, running
times are reasonable for networks up to about 100 000
vertices with current computers. For the largest of the
networks studied here, the collaboration network, which
has about 27 000 vertices, the algorithm takes around 20
minutes to run on a standard personal computer.

Conclusions

In this paper we have examined the problem of detect-
ing community structure in networks, which we frame
as an optimization task in which one searches for the

Books on 
American 
politics

• Communities

• Hierarchy
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Complex networks have been studied extensively owing to their
relevance to many real systems such as the world-wide web, the
Internet, energy landscapes and biological and social networks1–5.
A large number of real networks are referred to as ‘scale-free’
because they show a power-law distribution of the number of
links per node1,6,7. However, it is widely believed that complex
networks are not invariant or self-similar under a length-scale
transformation. This conclusion originates from the ‘small-
world’ property of these networks, which implies that the
number of nodes increases exponentially with the ‘diameter’ of
the network8–11, rather than the power-law relation expected for a
self-similar structure. Here we analyse a variety of real complex
networks and find that, on the contrary, they consist of self-
repeating patterns on all length scales. This result is achieved by
the application of a renormalization procedure that coarse-
grains the system into boxes containing nodes within a given
‘size’. We identify a power-law relation between the number of
boxes needed to cover the network and the size of the box,
defining a finite self-similar exponent. These fundamental prop-
erties help to explain the scale-free nature of complex networks
and suggest a common self-organization dynamics.
Two fundamental properties of real complex networks have

attracted much attention recently: the small-world and the scale-
free properties.Many naturally occurring networks are ‘small world’
because we can reach a given node from another one, following the
path with the smallest number of links between the nodes, in a very
small number of steps. This corresponds to the so-called ‘six degrees
of separation’ in social networks10. It is mathematically expressed by
the slow (logarithmic) increase of the average diameter of the
network, !l; with the total number of nodes N, !l< lnN; where l
is the shortest distance between two nodes and defines the distance
metric in complex networks6,8,9,11. Equivalently, we obtain:

N < e
!l=l0 ð1Þ

where l0 is a characteristic length.
A second fundamental property in the study of complex networks

arises with the discovery that the probability distribution of
the number of links per node, P(k) (also known as the degree
distribution), can be represented by a power-law (‘scale-free’) with a
degree exponent g that is usually in the range 2 ,g , 3 (ref. 6):

PðkÞ< k2g ð2Þ
These discoveries have been confirmed in many empirical studies of
diverse networks1–4,6,7.
With the aim of providing a deeper understanding of the

underlying mechanism that leads to these common features, we
need to probe the patterns within the network structure in more
detail. The question of connectivity between groups of intercon-
nected nodes on different length scales has received less attention.
But many examples exhibit the importance of collective behaviour,
such as interactions between communities within social networks,
links between clusters of websites of similar subjects, and the highly
modular manner in which molecules interact to keep a cell alive.
Here we show that real complex networks, such as the world-wide
web (WWW), social, protein–protein interaction networks (PIN)
and cellular networks are invariant or self-similar under a length-
scale transformation.

This result comes as a surprise, because the exponential increase
in equation (1) has led to the general understanding that complex
networks are not self-similar, since self-similarity requires a power-
law relation between N and l.

How can we reconcile the exponential increase in equation (1)
with self-similarity, or (in other words) an underlying length-scale-
invariant topology? At the root of the self-similar properties that we
unravel in this study is a scale-invariant renormalization procedure
that we show to be valid for dissimilar complex networks.

To demonstrate this concept we first consider a self-similar

Figure 1 The renormalization procedure applied to complex networks. a, Demonstration
of the method for different lB. The first column depicts the original network. We tile the

system with boxes of size lB (different colours correspond to different boxes). All nodes in
a box are connected by a minimum distance smaller than the given lB. For instance, in the

case of lB ¼ 2, we identify four boxes that contain the nodes depicted with colours red,

orange, white and blue, each containing 3, 2, 1 and 2 nodes, respectively. Then we

replace each box by a single node; two renormalized nodes are connected if there is at

least one link between the unrenormalized boxes. Thus we obtain the network shown in

the second column. The resulting number of boxes needed to tile the network, N B(lB), is
plotted in Fig. 2 versus lB to obtain d B as in equation (3). The renormalization procedure is

applied again and repeated until the network is reduced to a single node (third and fourth

columns for different lB). b, The stages in the renormalization scheme applied to the
entire WWW. We fix the box size to lB ¼ 3 and apply the renormalization for four stages.

This corresponds, for instance, to the sequence for the network demonstration depicted in

the second row in panel a. We colour the nodes in the web according to the boxes to which
they belong. The network is invariant under this renormalization, as explained in the

legend of Fig. 2d and the Supplementary Information.
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• Fractals hidden in networks

network embedded in euclidean space, of which a classical example
would be a fractal percolation cluster at criticality12. To unfold the
self-similar properties of such clusters we calculate the fractal
dimension using a ‘box-counting’ method and a ‘cluster-growing’
method13.

In the firstmethodwe cover the percolation cluster withNB boxes
of linear size lB. The fractal dimension or box dimension dB is then
given by14:

NB < l2dB
B ð3Þ

In the second method, the network is not covered with boxes.
Instead one seed node is chosen at random and a cluster of nodes
centred at the seed and separated by a minimum distance l is
calculated. The procedure is then repeated by choosing many seed
nodes at random and the average ‘mass’ of the resulting clusters
(kMcl, defined as the number of nodes in the cluster) is calculated as
a function of l to obtain the following scaling:

kMcl < ldf ð4Þ
defining the fractal cluster dimension d f

14. Comparing equations
(4) and (1) implies that d f ¼ 1 for complex small-world
networks.

For a homogeneous network characterized by a narrow degree
distribution (such as a fractal percolation cluster) the box-counting
method of equation (3) and the cluster-growing method of
equation (4) are equivalent, because every node typically has the

same number of links or neighbours. Equation (4) can then be
derived from equation (3) and dB ¼ d f, and this relation has been
regularly used.
The crux of the matter is to understand how we can calculate a

self-similar exponent (analogous to the fractal dimension in eucli-
dean space) in complex inhomogeneous networks with a broad
degree distribution such as equation (2). Under these conditions
equation (3) and (4) are not equivalent, as will be shown below. The
application of the proper covering procedure in the box-counting
method (equation (3)) for complex networks unveils a set of self-
similar properties such as a finite self-similar exponent and a new set
of critical exponents for the scale-invariant topology.
Figure 1a illustrates the box-covering method using a schematic

network composed of eight nodes. For each value of the box size lB,
we search for the number of boxes needed to tile the entire network
such that each box contains nodes separated by a distance l , lB.
This procedure is applied to several different real networks: (1) a

part of the WWW composed of 325,729 web pages that are
connected if there is a URL link from one page to another6

(http://www.nd.edu/,networks); (2) a social network where the
nodes are 392,340 actors linked if they were cast together in at least
one film15; (3) the biological networks of protein–protein inter-
actions found in Escherichia coli (429 proteins) and Homo sapiens
(946 proteins) linked if there is a physical binding between them
(database available via the Database of Interacting Proteins16,17,
other PINs are discussed in the Supplementary Information), and

Figure 2 Self-similar scaling in complex networks. a, The upper panel shows a log-log
plot of N B versus lB, revealing the self-similarity of the WWW and actor network

according to equation (3). The lower panel shows the scaling of s(lB) versus lB according
to equation (9). The error bars are of the order of the symbol size. b, Same as a but for two
PINs: H. sapiens and E. coli. Results are analogous to b but with different scaling

exponents. c, Same as a for the cellular networks of A. fulgidus, E. coli and C. elegans.
d, Invariance of the degree distribution of the WWWunder the renormalization for different

box sizes, lB. We show the data collapse of the degree distributions, demonstrating the

self-similarity at different scales. The inset shows the scaling of k 0 ¼ s(lB)k for different

lB, whence we obtain the scaling factor s(lB). Moreover, we also apply the
renormalization for a fixed box size, for instance lB ¼ 3 as shown in Fig. 1b for the WWW,

until the network is reduced to a few nodes, and find that P(k) is invariant under these

multiple renormalizations as well, for several iterations (see Supplementary Information).
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- Overlapping communities - 

functions denoted by P(m), P(sov), P(d com) and P(s com). For the
overlap size, for example, P(sov) means the proportion of those
overlaps that are larger than sov. Further relevant statistical features
will be introduced later.
The basic observation onwhich our community definition relies is

that a typical community consists of several complete (fully con-
nected) subgraphs that tend to share many of their nodes. Thus, we
define a community, or more precisely a k-clique community, as a
union of all k-cliques (complete subgraphs of size k) that can be
reached from each other through a series of adjacent k-cliques (where
adjacency means sharing k 2 1 nodes)21–23. This definition seeks to
represent the fact that it is an essential feature of a community that its
members can be reached through well-connected subsets of nodes.
There are other parts of the whole network that are not reachable
from a particular k-clique, but they potentially contain further
k-clique communities. In turn, a single node can belong to several
communities. All these can be explored systematically and can result
in many overlapping communities (illustrated in Fig. 1c). In most
cases, relaxing this definition (for example, by allowing incomplete
k-cliques) is practically equivalent to decreasing k. For finding
meaningful communities, the way in which they are identified is
expected to satisfy several basic requirements: it cannot be too
restrictive, it should be based on the density of links, it is required
to be local, it should not yield any cut-node or cut-link (whose
removal would disjoin the community) and, of course, it should
allow overlaps. We employ the community definition specified
above, because none of the others in the literature satisfy all these
requirements simultaneously21,24.

Although the numerical determination of the full set of k-clique
communities is a polynomial problem, we use an algorithm (which
can be downloaded from http://angel.elte.hu/clustering/) that is
exponential, because it is significantly more efficient for the graphs
corresponding to real data. This method is based on first locating all
cliques (maximal complete subgraphs) of the network and then
identifying the communities by carrying out a standard component
analysis of the clique–clique overlap matrix21. More details about the
method and its speed are given in Supplementary Information.
We use our method for binary networks (that is, with undirected

and unweighted links). An arbitrary network can always be trans-
formed into a binary one by ignoring any directionality in the links
and keeping only those that are stronger than a threshold weight w*.
Changing the threshold is like changing the resolution (as in a
microscope) with which the community structure is investigated:
by increasing w* the communities start to shrink and fall apart. A
similar effect can be observed by changing the value of k as well:
increasing kmakes the communities smaller and more disintegrated
but also at the same time more cohesive.
When we are interested in the community structure around a

particular node, it is advisable to scan through some ranges of k and
w* and monitor how its communities change. As an illustration, in
Fig. 2 we show diagrams of the communities of three selected nodes
of three large networks: the social network of scientific collabo-
rators25 (Fig. 2a), the network of word associations26 related to
cognitive sciences (Fig. 2b) and the molecular-biological network
of protein–protein interactions27 (Fig. 2c). These pictures can serve as
tests or validations of the efficiency of our algorithm. In particular,

Figure 2 | The community structure around a particular node in three
different networks. The communities are colour coded, the overlapping
nodes and links between them are emphasized in red, and the volume of the
balls and the width of the links are proportional to the total number of
communities they belong to. For each network the value of k has been set to
4. a, The communities of G. Parisi in the co-authorship network of the
Los Alamos CondensedMatter archive (for threshold weightw* ¼ 0.75) can

be associated with his fields of interest. b, The communities of the word
‘bright’ in the South Florida Free Association norms list (for w* ¼ 0.025)
represent the different meanings of this word. c, The communities of the
protein Zds1 in the DIP core list of the protein–protein interactions of S.
cerevisiae can be associated with either protein complexes or certain
functions.
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microscope) with which the community structure is investigated:
by increasing w* the communities start to shrink and fall apart. A
similar effect can be observed by changing the value of k as well:
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but also at the same time more cohesive.
When we are interested in the community structure around a
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cognitive sciences (Fig. 2b) and the molecular-biological network
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balls and the width of the links are proportional to the total number of
communities they belong to. For each network the value of k has been set to
4. a, The communities of G. Parisi in the co-authorship network of the
Los Alamos CondensedMatter archive (for threshold weightw* ¼ 0.75) can

be associated with his fields of interest. b, The communities of the word
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represent the different meanings of this word. c, The communities of the
protein Zds1 in the DIP core list of the protein–protein interactions of S.
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the communities of G. Parisi (whose contributions in different fields
of physics are well known) shown in Fig. 2a are associated with his
fields of interest, as can be deduced from the titles of the papers
involved. The four-clique communities of the word ‘bright’ (Fig. 2b)
correspond to the various meanings of this word. An important
biological application is finding the communities of proteins, based
on their interactions. Indeed, most proteins in the communities
shown in Figs 2c and 3 can be associated with either protein
complexes or certain functions, as can be looked up by using the
GO-TermFinder package28 and the online tools of the Saccharomyces
Genome Database (SGD)29. For some proteins no function is yet
available. Thus, the fact that they show up in our approach as
members of communities can be interpreted as a prediction of
their functions. One such example can be seen in the enlarged

portion of Fig. 3. For the protein Ycr072c, which is required for
the viability of the cell and appears in the dark green community on
the right, SGD provides no biological process (function). By far the
most significant GO term for the biological process of this commu-
nity is ‘ribosome biogenesis/assembly’. We can therefore infer that
Ycr072c is likely to be involved in this process. In addition, new
cellular processes can be predicted if as yet unknown communities
are found with our method.
These examples (and further examples included in Supplementary

Information) show the advantages of our approach over the existing
divisive and agglomerative methods recently used for large real
networks. Divisive methods cut the network into smaller and smaller
pieces, and each node is forced to remain in only one community and
be separated from its other communities, most of which then
necessarily fall apart and disappear. This happens, for example,
with the word ‘bright’ when we apply the method described in ref.
16: it tends to stay together mostly with the words of the community
related to ‘light’, while most of its other communities (for example,
those related to ‘colours’; see Fig. 2b) completely disintegrate (‘green’
becomes associated with the vegetables, ‘orange’ with the fruits, and
so on). Agglomerative methods do the same, but in the reverse
direction. For example, when we applied the agglomerative method
of ref. 18, at some point ‘bright’, as a single word, joined a ‘commu-
nity’ of 890 other words. In addition, suchmethods inevitably lead to
a tree-like hierarchical rendering of the communities, whereas our
approach allows the construction of an unconstrained network of
communities.
The networks chosen above have been constructed in the following

ways. In the co-authorship network of the Los Alamos e-print
archives25 each article contributes a value 1/(n 2 1) to the weight
of the link between every pair of its n authors. In the South Florida
Free Association norms list26 the weight of a directed link from one
word to another indicates the frequency with which the people in the
survey associated the end point of the link with its starting point. For
our purposes these directed links have been replaced by undirected
ones with aweight equal to the sum of the weights of the correspond-
ing two oppositely directed links. In the Database of Interacting
Proteins (DIP) core list of the protein–protein interactions of
Saccharomyces cerevisiae27 each interaction represents an unweighted
link between the interacting proteins. These networks are very large,
consisting of 30,739, 10,617 and 2,609 nodes and 136,065, 63,788 and
6,355 links, respectively.
Although different values of k and w* might be optimal for the

local community structure around different nodes, we should set
some global criterion to fix their values if we wish to analyse the
statistical properties of the community structure of the entire net-
work. The criterionwe use is based on finding a community structure
that is as highly structured as possible. In the related percolation
phenomena23 a giant component appears when the number of links is
increased above some critical point. Therefore, to approach this
critical point from below, for each selected value of k (typically
between 3 and 6) we lower the threshold w* until the largest
community becomes twice as big as the second largest one. In this
way we ensure that we find asmany communities as possible, without
the negative effect of having a giant community that would smear out
the details of the community structure by merging many smaller
communities. We denote by f* the fraction of links stronger than w*,

Figure 3 |Network of the 82 communities in theDIP core list of the protein–
protein interactions of S. cerevisiae for k 5 4. The areas of the circles and
the widths of the links are proportional to the size of the corresponding
communities (scoma ) and to the size of the overlaps (sova;b), respectively. The
coloured communities (top) are cut out and magnified to reveal their
internal structure (bottom): the nodes and links of the original network have
the same colour as their communities, those that are shared by more than
one community are emphasized in red, and the grey links are not part of
these communities. The areas of the circles and the widths of the links are
proportional to the total number of communities they belong to.

Table 1 | Statistical properties of the network of communities

Network N com kdcoml kCcoml krl

Co-authorship 2,450 12.10 0.44 0.58
Word association 670 11.33 0.56 0.72
Protein interaction 82 1.54 0.17 0.26

Ncom is the number of communities, kdcoml is the average community degree, kCcoml is the
average clustering coefficient of the network of communities, and krl is the average fraction
of shared nodes in the communities.
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