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Proteins

• what are they?

 chains of amino acids

 peptide bonds link the
backbone

• native state

 unique 3D structure
(native physiological
conditions)

 biological function

 folding times from
nanoseconds to minutes



Motivation

•conformations

 2 angles with ~3 local minima of the torsion energy /
amino acid

 N monomers ⇒ about 10N different conformations

 1014 conformations / minute (40 monomer protein,
experimental data)



Levinthal type problems

• Levinthal’s paradox, 1969

 finding the native state by random sampling is not
possible

 folding pathways, funnels

• An evolutionary paradox?

 random amino acids have frustrated landscapes

 nature evolved funnels

 2140 possible proteins to choose from

HOW ?



Networks?

• Conjecture:

 generic properties of configuration spaces

 some properties can explain when/why funnels arise

 a random non-folding protein is not “far” from a
foldable structure

• Framework is networks

 discrete configurations spaces

 scalable properties



Configuration networks

• Small-world networks and the conformation space of a
short lattice polymer chain: A. Scala, L.A.N. Amaral and M.
Barthélémy, EuroPhys.Lett. 55, 594 (2001)
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• Toy robot arm

 <l> ~ log N

 P(k) is binomial



How about proteins?

• The protein Folding Network: F. Rao, A. Caflisch, JMB,
342, 299 (2004)

 beta3s: 20 monomers,
antiparallel beta sheets

 MD simulation,
implicit water

 330K, equilibrium
folded ↔ random coil

NODE --  8 letters / AA
(local secondary struct)

 LINK -- 2ps transition



A Scale-free network?!?

beta3s
randomized

γ = - 2

Are configuration spaces
homogeneous or not?

 MD walk is NOT
random

 energy of
configurations is a key
player



Gradient flow networks

 substrate network

 scalar on nodes

 gradient flow graph



Gradient flow networks

 substrate network

 scalar on nodes

 gradient flow graph

• MD simulation is a flow network

• Gradient network is the backbone
of the configuration space at T=0



Why scale-free?

 Erdős-Rényi substrate network
 i.i.d scalars on nodes

⇒ gradient network is a scale-free tree

γ = - 1

<k> So, how
do we get
γ = - 2 ?

And
funnels ?



Energy landscape trees

 E= bottom of basin

h = height of
lowest ridge

 E

h
Erdős-Rényi: golf-course



Minimal network model
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 <l> ~ log N

 P(k) is binomial

•  Lessons from the robot arm:

 nD hypercube!

 small world BUT no long
range links:

d ~ n but N = 3n ⇒ d ~ log N

•  Steric constraints?

 missing nodes

 missing links

 We can model this!



A Bead-Chain Model

•  The BC robot arm model

 beads and rods in 3D

 rod-rod angle Θ

 3 positions around axis

n=6, Θ=90° 



Random geometric nets

Somewhat like a
hypercube with

holes

N=10000, <k>=200

2D5D

 homogeneous

 no shortcuts:
<l> ~ N1/d

 P(kin) ~ kin-1



Where is the energy?

• Until now:

 energies were independently drawn from the same
distribution (any…)

 homogeneity in k

⇒ slope -1

⇒ NO funnel

• Real systems:

 energies have to correlate with properties of the graph

HOW ?



Attractive potentials

• Systems with Lennard-Jones like interactions

 attractive at medium to long range

 repulsive at very short range

 the system likes to “clump” (like proteins!)

• Conjecture:

 small kconf  ↔ constrained (folded)

↔ lower energy

 large  kconf  ↔ loose (random coil)

↔ higher energy

k

E



And the winner is

γ = - 2

• Random geometric network gives slope - 2

2 D

3 D

4 D

5 D

• AND funnels!



Conclusions

• Swiss cheese model of configuration space:

 high D lattice

 forbidden subspaces

• Minima at small k 

 FUNNELS



What’s next?

• Are we correct?
 use robot arm measure forbidden subspaces
 check for funnels: assume and also measure E(k)
 use MD to measure configuration space and E(k)
for real proteins
 reproduce the MD network using biased walks

• Analytics
 prove: locally tree-like networks: slope -1 for
ANY bias
 deal with triangles and rectangles
 solve the RG case (bias and no bias)



Thank you!


