

### **Proteins**



- what are they?
  - ✓ chains of amino acids
  - ✓ peptide bonds link the backbone
- native state
  - ✓ unique 3D structure (native physiological conditions)
  - ✓ biological function
  - ✓ folding times from nanoseconds to minutes



### **Motivation**



#### conformations

✓ 2 angles with ~3 local minima of the torsion energy/



- ✓ N monomers  $\Rightarrow$  about 10<sup>N</sup> different conformations
- $\checkmark$  10<sup>14</sup> conformations / minute (40 monomer protein, experimental data)

# Levinthal type problems



- Levinthal's paradox, 1969
  - ✓ finding the native state by random sampling is not possible
  - ✓ folding pathways, funnels
- An evolutionary paradox?
  - ✓ random amino acids have frustrated landscapes
  - ✓ *nature* evolved *funnels*
  - ✓  $21^{40}$  possible proteins to choose from

HOW?



### **Networks?**



#### • Conjecture:

- ✓ generic properties of configuration spaces
- ✓ some properties can explain when/why funnels arise
- ✓ a random non-folding protein is not "far" from a foldable structure

#### Framework is networks

✓ discrete configurations spaces

✓ scalable properties



## **Configuration networks**



• Small-world networks and the conformation space of a short lattice polymer chain: A. Scala, L.A.N. Amaral and M. Barthélémy, EuroPhys.Lett. 55, 594 (2001)



# **How about proteins?**



• The protein Folding Network: F. Rao, A. Caflisch, JMB,

342, 299 (2004)

✓ beta3s: 20 monomers, antiparallel beta sheets

✓ MD simulation, implicit water

✓ 330K, equilibrium folded ↔ random coil

NODE -- 8 letters / AA (local secondary struct)

LINK -- 2ps transition



### A Scale-free network?!?





 $\gamma = -2$ 

Are configuration spaces homogeneous or not?

- ✓ MD walk is NOT random
- ✓ energy of configurations is a key player

## **Gradient flow networks**





### **Gradient flow networks**





# Why scale-free?



- ✓ Erdős-Rényi substrate network
- ✓ i.i.d scalars on nodes
  - ⇒ gradient network is a scale-free tree



So, how
do we get  $\gamma = -2?$ 

And funnels?

# **Energy landscape trees**





### Minimal network model





 $\checkmark P(k)$  is binomial



• Lessons from the robot arm:

- ✓ nD hypercube!
- ✓ small world BUT no long range links:

$$d \sim n \ but \ N = 3^n \Rightarrow d \sim \log N$$

- Steric constraints?
  - ✓ missing nodes
  - ✓ missing links

We can model this!

### **A Bead-Chain Model**



- The BC robot arm model
  - ✓ beads and rods in 3D
  - $\checkmark$  rod-rod angle  $\Theta$
  - ✓ 3 positions around axis







## Random geometric nets





# Where is the energy?



- Until now:
  - ✓ energies were independently drawn from the same distribution (any...)
  - ✓ homogeneity in k
    - $\Rightarrow$  slope -1
    - $\Rightarrow$  NO funnel
- Real systems:
  - ✓ energies have to correlate with properties of the graph



# **Attractive potentials**



- Systems with Lennard-Jones like interactions
  - ✓ attractive at medium to long range
  - ✓ repulsive at very short range
  - ✓ the system likes to "clump" (like proteins!)
- Conjecture:
- $\checkmark$  small  $k_{conf} \Leftrightarrow$  constrained (folded)
  - → lower energy
- ✓ large  $k_{conf} \Leftrightarrow loose (random coil)$ 
  - → higher energy



### And the winner is



• Random geometric network gives slope -

• AND funnels!





### **Conclusions**



- Swiss cheese model of configuration space:
  - ✓ high D lattice
  - ✓ forbidden subspaces
- Minima at small k
  - **✓ FUNNELS**



### What's next?



- Are we correct?
  - ✓ use robot arm measure forbidden subspaces
  - ✓ check for funnels: assume and also measure E(k)
  - ✓ use MD to measure configuration space and E(k) for real proteins
  - ✓ reproduce the MD network using biased walks
- Analytics
  - ✓ prove: locally tree-like networks: slope -1 for ANY bias
  - ✓ deal with triangles and rectangles
  - ✓ solve the RG case (bias and no bias)

