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* defined by dihedral angles

v' 2 angles with 2-3 local minima of the torsion energy
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v' N monomers = about 10N different conformations




Levinthal’s paradox cW\/

Center for Nonlinear Studies

* Anfinsen: thermodynamic hypothesis [ i Gomeger & Anfsen
\/native state iS at the global Cold Harbor Symp. Quant. Biol.
o 28, 439 (1963)
minimum of the free energy

* Levinthal’s paradox, 1968 Levinthal, J. Chim. Phys. 65, 44-45 (1968)

v’ finding the native state by random sampling is not
possible

v' 40 monomer polypeptide — 10'3 conf/s Wetlaufer, P.N.A.S.
70, 691 (1973)

— 3-10" years to sample all

— universe ~ 2-10'"% years old
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v’ finding the native state by random sampling is not
possible

v' 40 monomer polypeptide — 10'3 conf/s Wetlaufer, P.N.A.S.
70, 691 (1973)

— 3-10" years to sample all

— universe ~ 2-10'"% years old

v nucleation

v folding pathways
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* Bryngelson & Wolynes, 1987

Bryngelson & Wolynes, P.N.A.S. 84, 7524 (1987))

v free energy landscape

v' a random hetero-polymer typically does NOT fold
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* Bryngelson & Wolynes, 1987

Bryngelson & Wolynes, P.N.A.S. 84, 7524 (1987))

v free energy landscape

v' a random hetero-polymer typically does NOT fold

Experiment:

— random sequences
— GLU, ARG, LEU
Inowhm“ — 80-100 amino-acids

gy Bia

Enex

bias ~ roughness

|
— ) . I Davidson & Sauer, P.N.A.S. 91, 2146 (1994)
Similarity Order Parameter: Q
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* Leopold, Mortal & Onuchic, 1992

Leopold, Mortal & Onuchic, P.N.A.S. 89, 8721 (1992)

Configurational Entropy

Energy funnels

3
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Similarity Order Parameter: Q

v many folding pathways
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* Leopold, Mortal & Onuchic, 1992

Leopold, Mortal & Onuchic, P.N.A.S. 89, 8721 (1992)

Configurational Entropy

Energy funnels Given any amino-acid

sequence: can we tell if it
is a good folder?

3
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rovene v experiments (X-ray, NMR)
v molecular dynamics
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~~til} l

‘/ o
Similarity Order Plarameter: Q homOZOgy mOdeltng

v many folding pathways




Funnels w%\Va

Center for Nonlinear Studies

* Leopold, Mortal & Onuchic, 1992

Leopold, Mortal & Onuchic, P.N.A.S. 89, 8721 (1992)

Configurational Entropy

Energy funnels Given any amino-acid

sequence: can we tell if it
is a good folder?

3
i

rovene v experiments (X-ray, NMR)
v molecular dynamics
bias »» reughness simulations

~~til} l

‘/ o
Similarity Order Plarameter: Q homOZOgy mOdeltng

v manyfolding pathways Difficult and slow
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s

e State of the art . )

N,
L S i NS

Ribosome in explicit solvent:

— targeted MD

- 2.64x10° atoms (2.5x10° + water)

- Q machine, 768 processors

- 260 days of simulation (event: 2 ns)

~ 101 times
slower

v distributed computing
(Stanford, Folding@home)

- more than 100,000 CPU'’s
- simulation of complete folding event
» BBAD, 23-residue, implicit water

VKV N @IS DR EVAYA (o) Le biat- RS st QARVEIN Shirts & Pande, Science 290, 1903 (2000)
Snow, Nguyen, Pande, Gruebele, Nature 420,102 (2002)




Configuration networks CW\/

Center for Nonlinear Studies

e Configuration networks Protein conformations

v" dihedral angles have
few preferred values

Ramachandran & Sasisekharan, J.Mol.Biol. 7, 95 (1963)

* Helix
* Sheet
% * other
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-

T
et .
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Ramachandran map
: PDB structures

b

NODE < configuration B e E

LINK <= change of one degree v refinement of angle
of freedom (angle)

values — continuous case
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e VERY LARGE: 100 monomers — 1019 nodes. However:

Generic features of folding are determined
by STATISTICAL properties
of the configuration network
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¢ degree distribution

v toolkit from network research ¢ average distance

) . . ) ¢ clustering
v captures the high dimensionality ¢ degree correlations

Albert & Barabasi, Rev. Mod. Phys. 74, 67 (2002); Newman, SIAM Rev. 45, 167 (2003)
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e VERY LARGE: 100 monomers — 1019 nodes. However:

Generic features of folding are determined
by STATISTICAL properties
of the configuration network

. ¢ degree distribution
v toolkit from network research ¢ average distance

) . . ) ¢ clustering
v captures the high dimensionality ¢ degree correlations

Albert & Barabasi, Rev. Mod. Phys. 74, 67 (2002); Newman, SIAM Rev. 45, 167 (2003)

» faster algorithms to simulate folding events

» pre-screening synthetic proteins

» insights into misfolding
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* The Protein Folding Network: F. Rao, A. Cafhsch
J.Mol.Biol, 342, 299 (2004) ,

v beta3s: 20 monomers,
antiparallel beta sheets

v' MD simulation,
implicit water

v 330K, equilibrium
folded <> random coil

NODE -- 8 letters/ AA
(local secondary struct)

LINK -- 2ps transition
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1 @ beta3s Many real-world
e randomized networks are scale free

v P ( k ) ~ k7
Barabasi & Albert,
v’ hubs Science 286, 509,

(1999):

¢ co-authorship (y=1 - 2.5)

4 citations (y=3)

4 sexual contacts (y=3.4)

4 movie actors (y=2.3)

¢ Internet (y=2.4)

¢ World Wide Web (y=2.1/2.5)

¢ Genetic regulation (y=1.3)

¢ Protein-protein interactions (y =2.4)
¢ Metabolic pathways (y=2.2)

¢ Food webs (y=1.1)
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e beta3s Many real-world

e randomized networks are scale free
vP(k)~Ek
Barabasi & Albert,

Science 286, 509,
(1999);

Many reasons
behind SF topology

g _ 4 sexual contacts (y=3.4)
i i ors (Y=2.3)
* Why is the protein network scale free? ¥\

 Why does the randomized chain have AL

e S . rulation (y=1.3)
” sU Y
similar degree distribution? btein interactions (y =2.4)

> Why is Y =- 27? S(sillv\lr;lys (y=2.2)
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v’ n-dimensional hypercube

v binomial degree distribution

Homogeneous
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e/

Y A | 7

e Steric constraints?

v’ n-dimensional hypercube

v binomial degree distribution missing nodes

v’ missing links

Homogeneous .
8 Swiss cheese
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e Beads on a chain in 3D: robot arm model

v similar to Ca protein models Honeycutt & Thirumalai, Biopolymers 32, 695 (1992)

v rod-rod angle ®

v' 3 positions around axis
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v' 3 positions around axis

N=18; ® =120
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e Beads on a chain in 3D: robot arm model

v similar to Ca protein models Honeycutt & Thirumalai, Biopolymers 32, 695 (1992)

v rod-rod angle ®

v' 3 positions around axis

N=18; ® =120

2212112212111122 v Homogeneous network




The “dilemma”

HOMOGENEOUS

e from studies of
conformation networks

v’ bead chain

v robot arm

0.173
0.13

0,125
~ 01

N—

Q- 475
0.05

0. 023

05 1 15 2 25 3
k/<k>

w2 \V4

Center for Nonlinear Studies
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HOMOGENEOUS < » SCALE FREE

e from studies of e from polypeptide MD
conformation networks simulations

v’ bead chain v’ beta3s

v robot arm v randomized version
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HOMOGENEOUS < » SCALE FREE

e from studies of e from polypeptide MD
conformation networks simulations

v’ bead chain v’ beta3s

v robot arm v randomized version
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v’ homogeneous support network

Toroczkai & Bassler, Nature 428, 716 (2004);
v’ real numbers on nodes ArXiv: cond-mat/0408262 (2004)
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v’ homogeneous support network

Toroczkai & Bassler, Nature 428, 716 (2004);
v’ real numbers on nodes ArXiv: cond-mat/0408262 (2004)

v’ gradient flow graph

0.48e
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v’ homogeneous support network

Toroczkai & Bassler, Nature 428, 716 (2004);
v’ real numbers on nodes ArXiv: cond-mat/0408262 (2004)

v’ gradient flow graph

gradient network is
scale-free
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« Energy associated with each node (configuration)
v’ the gradient network /\
— most favorable transitions \ } \\}

/\\@/\/

— T=0 backbone of the flow \

v' MDD simulation \ \ \/ \
POV

A

— tracks the flow network —) \,\()

— biased walk close to the gradient network
v trees

— basins of local minima
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— basins of local minima

How dowe gety=-27?
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« Energy associated with each node (configuration)
v’ the gradient network /\
— most favorable transitions \ } \\}

/\\\@/\/

— T=0 backbone of the flow \

v' MDD simulation \ \ \/ \
POV

A

— tracks the flow network —) \.@

— biased walk close to the gradient network
v trees

— basins of local minima

How dowe gety=-27? And funnels?
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* A network model of configuration spaces

v network topology @

— homogeneous

— degree correlations
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* A network model of configuration spaces
v network topology a
— homogeneous

— degree correlations

v how to associate energies

55

constrained (folded) k, Eincreases ..., (random coil)

small k¢ large k.o,
lower energy higher energy
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* random geometric graph

R:Q;Zg,’fjfw | Dall & Christensen, Phys.Rev.E 66, 026121 (2002)
0.8
0.7 r
0.6
0.5
0.4 NF
0.3
0.2 r

0.1

0

0 01 02 03 04 05 06 0.7 08 09 1

v in higher D: similar to
hypercube with holes

v degree correlations
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* random geometric graph

Dall & Christensen, Phys.Rev.E 66, 026121 (2002)

* Energy proportional to

0.8 e o
connectivity

0.7 r

0.5
0.4 NF
0.3
0.2

0.1

0

0 01 02 03 04 05 06 0.7 08 09 1

v in higher D: similar to
hypercube with holes

v degree correlations
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o
—

T

Ry —— |
Pk) —

- "

R(1), P(k)

v monotonic
increase of E with
k is sufficient

 random geometric graph \

100 1+ 10k 1000
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ol

Local minima
Becker & Karplus, J.Chem.Phys. 106, 149 (1997)

/\ ' h = height of

lowest ridge
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ol

Local minima
Becker & Karplus, J.Chem.Phys. 106, 149 (1997)

Random energies: golf-course E ~ k: funnel I'II. “0“

Hull‘_lﬁ % T

_I 'l <k> 200 [f‘

| h= height of
lowest ridge
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* landscapes on RG graphs with E ~ k
RGG, N=5000
<k>=200
d=2

162 - 168
168 - 174
174 - 180
180 - 186
186 - 193
193 - 199
199 - 205
205 - 211
211-218
218 - 224
224 -230
230 - 236
236 - 243
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* landscapes on RG graphs with E ~ k
RGG, N=5000
<k>=200
d=2

B 62168
B 168-174

| - 174 - 180
|




Bead-chain model w%\V2
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* more realistic model: bead-chain

Lennard-Jones

v configuration network potential

— excluded volume

- Repulsiye  Attractive
v’ energy: Lennard-Jones — >

0.2 10.4 .6 0.8 1
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* more realistic model: bead-chain

v’ configuration network % |

0.8
— excluded volume

0.6

v energy: Lennard-Jones
04

Repulsive Atftractive
—rE————>

0.2lo.e4 0F 08 1

8§ 12 14
connectivity

v topological funnel
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* more realistic model: bead-chain

v’ configuration network % |

0.8
— excluded volume

0.6

v energy: Lennard-Jones
04

Repulsive Atftractive
—rE————>

0.2lo.e4 0F 08 1
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connectivity

v topological funnel
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e more realistic model: bead—chain

v’ configuration network % |

e
%

— excluded volume

g
=

v energy: Lennard-Jones

ive Atftractive
Pt——>

2live 08 0.8 1
L L

v topological funnel

S
o

en
—
O
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O
7 0]
O
=
=
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e
—
S
=
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Sl G B e

connectivity

* changing bead sizes (Gaussian distribution)

v amino-acid sizes vary along protein chains
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L=18, ©=120°
<r>=0.25; 0 =0.25
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Topological funnel:

v’ one low-k basin

v’ one way make a tight knot
v’ energy follows k
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Energy-based funnel:

v’ several tight knots

v’ many low-k basins

v funnel < energy is LARGE
for most knots
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Topological funnel: excluded volume effects
v one low-k basin determine the landscape
v’ one way make a tight knot S
v’ energy follows k

Energy-based funnel:
v’ several tight knots

hydrophobic effects
and/or charge

v’ many low-k basins determine the landscape

v funnel < energy is LARGE N

for most knots
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* which mechanism is (more) used in nature?

v’ statistical properties of sizes on BC chains

— funnels ‘ . .

v BC model with charges — learn about the

energy-only funnels I I I .

v look for these rules in real proteins
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* which mechanism is (more) used in nature?

v’ statistical properties of sizes on BC chains

— funnels ‘ . .

v BC model with charges — learn about the

energy-only funnels I I I .

v look for these rules in real proteins

Statistical rule
amino-acid sequence <> folding
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* New framework to look at protein energy landscapes
v basic topology: “Swiss-cheese” networks

v folding: biased random walk on the configuration
network

— leads to scale-free flow networks (MD)
v’ funnel formation can be modeled

— strong dependence on network topology

RGG, 0=1000, R=0.103006 Avr.=200, Linear Bias
Al T T 7

R(), P(k)

“ 1
|
. | ]
| ]
e-05 - Mg ]
e- F 4
[ | i
07 - Linear bias slope=tan(0.01x )=0.0314 ]
e ‘

10 100 1+10,k 1000




Thank you!




