Networks in Protein Folding

Proteins

- what are they?
 - ✓ basic functional units of a cell
 - \checkmark chains of amino acids (50 10³)
 - ✓ peptide bonds link the backbone

Proteins

- what are they?
 - ✓ basic functional units of a cell
 - \checkmark chains of amino acids (50 10³)
 - ✓ peptide bonds link the backbone
- native state
 - ✓ unique 3D structure (native physiological conditions)
 - ✓ biological function
 - ✓ fold in nanoseconds to minutes
 - ✓ about 1000 known 3D structures: X-ray crystallography, NMR

Protein conformations

- defined by dihedral angles
 - ✓ 2 angles with 2-3 local minima of the torsion energy

Protein conformations

- defined by dihedral angles
 - ✓ 2 angles with 2-3 local minima of the torsion energy

✓ N monomers \Rightarrow about 10^N different conformations

Levinthal's paradox

• Anfinsen: thermodynamic hypothesis

✓ native state is at the global

minimum of the free energy

Epstain, Goldberger, & Anfinsen, *Cold Harbor Symp. Quant. Biol.* **28**, 439 (1963)

• Levinthal's paradox, 1968

Levinthal, J. Chim. Phys. 65, 44-45 (1968)

- ✓ finding the native state by random sampling is not possible
- ✓ 40 monomer polypeptide $\rightarrow 10^{13}$ conf/s

70, 691 (1973)

Wetlaufer, P.N.A.S.

- \rightarrow 3·10¹⁹ years to sample all
- \rightarrow universe $\sim 2 \cdot 10^{10}$ years old

Levinthal's paradox

• Anfinsen: thermodynamic hypothesis

✓ native state is at the global

minimum of the free energy

Epstain, Goldberger, & Anfinsen, *Cold Harbor Symp. Quant. Biol.* **28**, 439 (1963)

• Levinthal's paradox, 1968

Levinthal, J. Chim. Phys. 65, 44-45 (1968)

- ✓ finding the native state by random sampling is not possible
- ✓ 40 monomer polypeptide $\rightarrow 10^{13}$ conf/s

Wetlaufer, *P.N.A.S.* **70**, 691 (1973)

- \rightarrow 3·10¹⁹ years to sample all
- \rightarrow universe $\sim 2 \cdot 10^{10}$ years old
- ✓ nucleation
- ✓ folding pathways

Free energy landscapes

• Bryngelson & Wolynes, 1987

Bryngelson & Wolynes, P.N.A.S. 84, 7524 (1987))

- ✓ free energy landscape
- ✓ a random hetero-polymer typically does NOT fold

Free energy landscapes

- Bryngelson & Wolynes, 1987
 - ✓ free energy landscape

Bryngelson & Wolynes, P.N.A.S. 84, 7524 (1987))

✓ a random hetero-polymer typically does NOT fold

Experiment:

- random sequences
- GLU, ARG, LEU
- 80-100 amino-acids
- ~ 95% did not fold in a stable manner

Davidson & Sauer, P.N.A.S. 91, 2146 (1994)

Funnels

• Leopold, Mortal & Onuchic, 1992

Leopold, Mortal & Onuchic, P.N.A.S. 89, 8721 (1992)

✓ many folding pathways

Funnels

Leopold, Mortal & Onuchic, 1992

Leopold, Mortal & Onuchic, P.N.A.S. 89, 8721 (1992)

Given any amino-acid sequence: can we tell if it is a good folder?

- ✓ experiments (X-ray, NMR)
- ✓ molecular dynamics simulations
- √ homology modeling

✓ many folding pathways

Funnels

Leopold, Mortal & Onuchic, 1992

Energy funnels

Roughness

bias >> roughness

Configurational Entropy

✓ many folding pathways

Similarity Order Parameter: O

Leopold, Mortal & Onuchic, P.N.A.S. 89, 8721 (1992)

Given any amino-acid sequence: can we tell if it is a good folder?

- ✓ experiments (X-ray, NMR)
- ✓ molecular dynamics simulations
- √ homology modeling

Difficult and slow

Molecular dynamics

State of the art

Sanbonmatsu, Joseph & Tung, P.N.A.S. 102 15854 (2005)

✓ supercomputer (LANL)

Ribosome in explicit solvent:

- targeted MD
- -2.64×10^6 atoms (2.5 $\times 10^5$ + water)
- Q machine, 768 processors
- 260 days of simulation (event: 2 ns)

✓ distributed computing (Stanford, Folding@home)

- more than 100,000 CPU's
- simulation of complete folding event
 - » BBA5, 23-residue, implicit water
 - » 10,000 CPU days/folding event (~1μs)

Shirts & Pande, *Science* **290**, 1903 (2000) Snow, Nguyen, Pande, Gruebele, *Nature* **420**,102 (2002)

Configuration networks

Configuration networks

NODE ← *configuration*

LINK ← change of one degree of freedom (angle)

Protein conformations

✓ dihedral angles have few preferred values

Ramachandran & Sasisekharan, J. Mol. Biol. 7, 95 (1963)

✓ refinement of angle values → continuous case

Why networks?

• VERY LARGE: 100 monomers \rightarrow 10¹⁰⁰ nodes. However:

Generic features of folding are determined by STATISTICAL properties of the configuration network

Why networks?

• VERY LARGE: 100 monomers \rightarrow 10¹⁰⁰ nodes. However:

Generic features of folding are determined by STATISTICAL properties of the configuration network

- ✓ toolkit from network research
- ✓ captures the high dimensionality

- **♦** degree distribution
- **♦** average distance
- **♦** clustering
- **♦** degree correlations

Albert & Barabási, Rev. Mod. Phys. 74, 67 (2002); Newman, SIAM Rev. 45, 167 (2003)

Why networks?

• VERY LARGE: 100 monomers $\rightarrow 10^{100}$ nodes. However:

Generic features of folding are determined by STATISTICAL properties of the configuration network

- ✓ toolkit from network research
- ✓ captures the high dimensionality

- **♦** degree distribution
- **♦** average distance
- **♦** clustering
- **♦** degree correlations

Albert & Barabási, Rev. Mod. Phys. 74, 67 (2002); Newman, SIAM Rev. 45, 167 (2003)

- faster algorithms to simulate folding events
- pre-screening synthetic proteins
- insights into misfolding

A real example

• The Protein Folding Network: F. Rao, A. Caflisch,

J.Mol.Biol, 342, 299 (2004)

✓ beta3s: 20 monomers, antiparallel beta sheets

✓ MD simulation, implicit water

✓ 330K, equilibrium folded ↔ random coil

NODE -- 8 letters / AA (local secondary struct)

LINK -- 2ps transition

Many real-world networks are scale free

$$\checkmark P(k) \sim k^{-\gamma}$$

√ hubs

Barabási & Albert, *Science* **286**, 509, (1999);

- co-authorship (γ =1 2.5)
- \diamond citations (γ =3)
- ♦ sexual contacts (γ=3.4)
- movie actors (γ =2.3)
- **♦** Internet (y=2.4)
- ♦ World Wide Web (γ =2.1/2.5)
- ♦ Genetic regulation (γ=1.3)
- ♦ Protein-protein interactions (γ =2.4)
- ♦ Metabolic pathways (γ=2.2)
- ♦ Food webs (γ =1.1)

Many real-world networks are scale free

$$\checkmark P(k) \sim k^{-\gamma}$$

✓ hubs

Barabási & Albert, *Science* **286**, 509, (1999);

Many reasons behind SF topology

- sexual contacts (γ =3.4)
- movie actors (γ =2.3)
- **♦** Internet (y=2.4)
- ♦ World Wide Web (γ =2.1/2.5)
- ♦ Genetic regulation (γ=1.3)
- ♦ Protein-protein interactions (γ =2.4)
- ♦ Metabolic pathways (γ=2.2)
- Food webs (γ =1.1)

Many real-world networks are scale free

$$\checkmark P(k) \sim k^{-\gamma}$$

✓ hubs

Barabási & Albert, Science **286**, 509, (1999);

Many reasons behind SF topology

ors (γ =2.3)

- ♦ sexual contacts (γ=3.4)
- Why is the protein network scale free? =2.4)
- Why does the randomized chain have similar degree distribution?
- Why is $\gamma = -2$?

=2.4) le Web (γ=2.1/2.5) gulation (γ=1.3)

otein interactions ($\gamma = 2.4$) pathways ($\gamma = 2.2$)

s $(\gamma=1.1)$

Robot arm networks

Robot arm networks

- ✓ n-dimensional hypercube
- ✓ binomial degree distribution

Homogeneous

Robot arm networks

- ✓ n-dimensional hypercube
- ✓ binomial degree distribution

Homogeneous

- Steric constraints?
 - ✓ missing nodes
 - ✓ missing links

Swiss cheese

A bead-chain model

- Beads on a chain in 3D: robot arm model
 - ✓ similar to C_{α} protein models

Honeycutt & Thirumalai, *Biopolymers* **32**, 695 (1992)

- ✓ rod-rod angle Θ
- ✓ 3 positions around axis

A bead-chain model

- Beads on a chain in 3D: robot arm model
 - ✓ similar to C_{α} protein models

Honeycutt & Thirumalai, *Biopolymers* **32**, 695 (1992)

- ✓ rod-rod angle Θ
- ✓ 3 positions around axis

A bead-chain model

- Beads on a chain in 3D: robot arm model
 - ✓ similar to C_{α} protein models

Honeycutt & Thirumalai, Biopolymers 32, 695 (1992)

- ✓ rod-rod angle Θ
- ✓ 3 positions around axis

N=18; Θ = 120 2212112212111122

✓ Homogeneous network

The "dilemma"

HOMOGENEOUS

- from studies of conformation networks
 - ✓ bead chain
 - ✓ robot arm

The "dilemma"

- **HOMOGENEOUS SCALE FREE**
- from studies of conformation networks
 - ✓ bead chain
 - ✓ robot arm

- from polypeptide MD simulations
 - ✓ beta3s
 - ✓ randomized version

The "dilemma"

HOMOGENEOUS SCALE FREE

- from studies of conformation networks
 - ✓ bead chain
 - ✓ robot arm
 - 0.175 0.15 0.125 0.075 0.05 0.025 0.5 1 1.5 2 2.5 3 k/<k>

- from polypeptide MD simulations
 - ✓ beta3s
 - ✓ randomized version

- ✓ homogeneous support network
- ✓ real numbers on nodes

Toroczkai & Bassler, *Nature* **428**, 716 (2004); ArXiv: cond-mat/0408262 (2004)

- ✓ homogeneous support network
- ✓ real numbers on nodes

Toroczkai & Bassler, *Nature* **428**, 716 (2004); ArXiv: cond-mat/0408262 (2004)

- ✓ homogeneous support network
- ✓ real numbers on nodes

Toroczkai & Bassler, *Nature* **428**, 716 (2004); ArXiv: cond-mat/0408262 (2004)

✓ gradient flow graph

- ✓ homogeneous support network
- ✓ real numbers on nodes

Toroczkai & Bassler, *Nature* **428**, 716 (2004); ArXiv: cond-mat/0408262 (2004)

✓ gradient flow graph

The energy landscape

- Energy associated with each node (configuration)
 - ✓ the gradient network
 - → most favorable transitions
 - \rightarrow T=0 backbone of the flow
 - ✓ MD simulation
 - → tracks the flow network
 - → biased walk close to the gradient network
 - **✓** trees
 - → basins of local minima

The energy landscape

- Energy associated with each node (configuration)
 - ✓ the gradient network
 - → most favorable transitions
 - \rightarrow T=0 backbone of the flow
 - ✓ MD simulation
 - → tracks the flow network

- **✓** trees
 - → basins of local minima

How do we get $\gamma = -2$?

The energy landscape

- Energy associated with each node (configuration)
 - ✓ the gradient network
 - → most favorable transitions
 - \rightarrow *T=0 backbone of the flow*
 - ✓ MD simulation
 - → tracks the flow network
 - → biased walk close to the gradient network
 - **✓** trees
 - → basins of local minima

How do we get $\gamma = -2$?

And funnels?

Model ingredients

- A network model of configuration spaces
 - ✓ network topology
 - → homogeneous
 - \rightarrow degree correlations

Model ingredients

- A network model of configuration spaces
 - ✓ network topology
 - → homogeneous
 - → degree correlations

✓ how to associate energies

 k_2 $k_1, k_2 \sim k_0$

constrained (folded) small k_{conf} lower energy

loose (random coil)

large k_{conf}

higher energy

Random geometric graph

• random geometric graph

✓ in higher D: similar to hypercube with holes

✓ degree correlations

Random geometric graph

random geometric graph

✓ in higher D: similar to hypercube with holes

✓ degree correlations

 Energy proportional to connectivity

Exponent is - 2

✓ monotonic increase of E with k is sufficient

Energy landscape trees

Becker & Karplus, *J. Chem. Phys.* **106**, 149 (1997)

Energy landscape trees

Topological funnels

• landscapes on RG graphs with E ~ k

RGG, N=5000 < k > = 200d = 2

Topological funnels

• landscapes on RG graphs with E ~ k

- more realistic model: bead-chain
 - ✓ configuration network
 - \rightarrow excluded volume
 - ✓ energy: Lennard-Jones

- more realistic model: bead-chain
 - ✓ configuration network
 - \rightarrow excluded volume
 - ✓ energy: Lennard-Jones
 - ✓ topological funnel

- more realistic model: bead-chain
 - ✓ configuration network
 - \rightarrow excluded volume
 - ✓ energy: Lennard-Jones
 - ✓ topological funnel

- more realistic model: bead-chain
 - ✓ configuration network
 - \rightarrow excluded volume
 - ✓ energy: Lennard-Jones
 - ✓ topological funnel

- changing bead sizes (Gaussian distribution)
 - ✓ amino-acid sizes vary along protein chains

Funnels in the BC model

Topological funnel:

- ✓ one low-k basin
- ✓ one way make a tight knot
- ✓ energy follows k

Topological funnel:

- ✓ one low-k basin
- ✓ one way make a tight knot
- ✓ energy follows k

excluded volume effects determine the landscape

Topological funnel:

- ✓ one low-k basin
- ✓ one way make a tight knot
- ✓ energy follows k

excluded volume effects determine the landscape

Energy-based funnel:

- ✓ several tight knots
- ✓ many low-k basins
- ✓ funnel ⇔ energy is LARGE for most knots

Topological funnel:

- ✓ one low-k basin
- ✓ one way make a tight knot
- ✓ energy follows k

excluded volume effects determine the landscape

Energy-based funnel:

- ✓ several tight knots
- ✓ many low-k basins
- ✓ funnel ⇔ energy is LARGE for most knots

hydrophobic effects and/or charge determine the landscape

Ongoing work

which mechanism is (more) used in nature?

✓ statistical properties of sizes on BC chains

 \rightarrow funnels

✓ BC model with charges → learn about the energy-only funnels

✓ look for these rules in real proteins

Ongoing work

- which mechanism is (more) used in nature?
 - ✓ statistical properties of sizes on BC chains
 - \rightarrow funnels

✓ BC model with charges → learn about the energy-only funnels

✓ look for these rules in real proteins

Statistical rule amino-acid sequence ↔ folding

Conclusions

- New framework to look at protein energy landscapes
 - ✓ basic topology: "Swiss-cheese" networks
 - ✓ folding: biased random walk on the configuration network
 - → leads to scale-free flow networks (MD)
 - ✓ funnel formation can be modeled
 - → strong dependence on network topology

Thank you!

