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Proteins

• what are they?

 basic functional units of a cell

 chains of amino acids (50 – 103)

 peptide bonds link the backbone Myoglobin
153 amino acids
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Proteins

• what are they?

 basic functional units of a cell

 chains of amino acids (50 – 103)

 peptide bonds link the backbone

• native state

 unique 3D structure (native
physiological conditions)

 biological function

 fold in nanoseconds to minutes

 about 1000 known 3D structures:
X-ray crystallography, NMR

Myoglobin
153 amino acids
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Protein conformations

• defined by dihedral angles

 2 angles with 2-3 local minima of the torsion energy

Amino-acid
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Protein conformations

• defined by dihedral angles

 2 angles with 2-3 local minima of the torsion energy

 N monomers ⇒ about 10N different conformations

Amino-acid
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Levinthal’s paradox

• Levinthal’s paradox, 1968

 finding the native state by random sampling is not
possible

 40 monomer polypeptide → 1013 conf/s

→ 3⋅ 1019 years to sample all

→ universe ~ 2⋅ 1010 years old

Wetlaufer, P.N.A.S.
70, 691 (1973)

Levinthal, J. Chim. Phys. 65, 44-45 (1968)
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• Anfinsen: thermodynamic hypothesis
native state is at the global
minimum of the free energy

Epstain, Goldberger, & Anfinsen,
Cold Harbor Symp. Quant. Biol.
28, 439 (1963)



Levinthal’s paradox

• Levinthal’s paradox, 1968

 finding the native state by random sampling is not
possible

 40 monomer polypeptide → 1013 conf/s

→ 3⋅ 1019 years to sample all

→ universe ~ 2⋅ 1010 years old

Wetlaufer, P.N.A.S.
70, 691 (1973)

Levinthal, J. Chim. Phys. 65, 44-45 (1968)

 nucleation

 folding pathways
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Free energy landscapes

• Bryngelson & Wolynes, 1987

 free energy landscape
Bryngelson & Wolynes, P.N.A.S. 84, 7524 (1987))

 a random hetero-polymer typically does NOT  fold
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Free energy landscapes

• Bryngelson & Wolynes, 1987

 free energy landscape
Bryngelson & Wolynes, P.N.A.S. 84, 7524 (1987))

 a random hetero-polymer typically does NOT  fold

Davidson & Sauer, P.N.A.S. 91, 2146 (1994)

Experiment:
— random sequences
— GLU, ARG, LEU
— 80-100 amino-acids

~ 95% did not fold
   in a stable manner
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Funnels

• Leopold, Mortal & Onuchic, 1992
Leopold, Mortal & Onuchic, P.N.A.S. 89, 8721 (1992)

 many folding pathways

Energy funnels
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Funnels

• Leopold, Mortal & Onuchic, 1992
Leopold, Mortal & Onuchic, P.N.A.S. 89, 8721 (1992)

 many folding pathways

Energy funnels Given any amino-acid
sequence: can we tell if it

is a good folder?

 experiments (X-ray, NMR)
 molecular dynamics
simulations
 homology modeling
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Funnels

• Leopold, Mortal & Onuchic, 1992
Leopold, Mortal & Onuchic, P.N.A.S. 89, 8721 (1992)

 many folding pathways

Energy funnels Given any amino-acid
sequence: can we tell if it

is a good folder?

 experiments (X-ray, NMR)
 molecular dynamics
simulations
 homology modeling

Difficult and slow
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Molecular dynamics

• State of the art

 supercomputer (LANL)

Ribosome in explicit solvent:
– targeted MD
– 2.64x106 atoms (2.5x105 + water)
– Q machine, 768 processors
– 260 days of simulation (event: 2 ns)

Sanbonmatsu, Joseph & Tung, P.N.A.S. 102 15854 (2005)

– more than 100,000 CPU’s
– simulation of complete folding event 

» BBA5, 23-residue, implicit water
» 10,000 CPU days/folding event (~1µs)

 distributed computing
(Stanford, Folding@home)

Shirts & Pande, Science 290, 1903 (2000)
Snow, Nguyen, Pande, Gruebele, Nature 420,102 (2002)

Center for Nonlinear Studies

~ 1016 times 
slower



Configuration networks

• Configuration networks

NODE ← configuration
LINK ← change of one degree

of freedom (angle)
 refinement of angle
values → continuous case

Center for Nonlinear Studies

Protein conformations

 dihedral angles have
few preferred values

Ramachandran map
PDB structures

Ramachandran & Sasisekharan, J.Mol.Biol. 7, 95 (1963)

• Helix

• Sheet

• other



Why networks?

• VERY LARGE: 100 monomers → 10100 nodes. However:

Generic features of folding are determined
by STATISTICAL properties 
of the configuration network
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Why networks?

• VERY LARGE: 100 monomers → 10100 nodes. However:

Generic features of folding are determined
by STATISTICAL properties 
of the configuration network

♦ degree distribution
♦ average distance
♦ clustering
♦ degree correlations

Albert & Barabási, Rev. Mod. Phys. 74, 67 (2002); Newman, SIAM Rev. 45, 167 (2003)
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 toolkit from network research

 captures the high dimensionality



Why networks?

• VERY LARGE: 100 monomers → 10100 nodes. However:

Generic features of folding are determined
by STATISTICAL properties 
of the configuration network

♦ degree distribution
♦ average distance
♦ clustering
♦ degree correlations

Albert & Barabási, Rev. Mod. Phys. 74, 67 (2002); Newman, SIAM Rev. 45, 167 (2003)
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 toolkit from network research

 captures the high dimensionality

 faster algorithms to simulate folding events

 pre-screening synthetic proteins

 insights into misfolding



A real example

• The Protein Folding Network: F. Rao, A. Caflisch,
J.Mol.Biol, 342342, 299 (2004)

 beta3s: 20 monomers,
antiparallel beta sheets

 MD simulation,
implicit water

 330K, equilibrium
folded ↔ random coil

NODE --  8 letters / AA
(local secondary struct)

 LINK -- 2ps transition
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Scale-free network

beta3s
randomized
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Many real-world
networks are scale free



 hubs

♦ co-authorship (γ=1 - 2.5)
♦ citations (γ=3)
♦ sexual contacts (γ=3.4)
♦ movie actors (γ=2.3)
♦ Internet (y=2.4)
♦ World Wide Web (γ=2.1/2.5)
♦ Genetic regulation (γ=1.3)
♦ Protein-protein interactions (γ =2.4)
♦ Metabolic pathways (γ=2.2)
♦ Food webs (γ=1.1)

Barabási & Albert,
Science 286, 509,

(1999);

Scale-free network

beta3s
randomized
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Many real-world
networks are scale free



 hubs

♦ co-authorship (γ=1 - 2.5)
♦ citations (γ=3)
♦ sexual contacts (γ=3.4)
♦ movie actors (γ=2.3)
♦ Internet (y=2.4)
♦ World Wide Web (γ=2.1/2.5)
♦ Genetic regulation (γ=1.3)
♦ Protein-protein interactions (γ =2.4)
♦ Metabolic pathways (γ=2.2)
♦ Food webs (γ=1.1)

Barabási & Albert,
Science 286, 509,

(1999);

Scale-free network

beta3s
randomized

Many reasons 
behind SF topology

• Why is the protein network scale free?
• Why does the randomized chain have 
   similar degree distribution?
• Why is  γ = - 2 ?
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Robot arm networks
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Robot arm networks
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 n-dimensional hypercube

 binomial degree distribution
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Robot arm networks
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020

021

 n-dimensional hypercube

 binomial degree distribution

20 1

00
01 02 10 11 12 20 21

22

n=0

n=1

n=2

•  Steric constraints?

 missing nodes

 missing links

Swiss cheese
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A bead-chain model

•  Beads on a chain in 3D: robot arm model

 similar to Cα protein models

 rod-rod angle Θ

 3 positions around axis

N=6; Θ = 90

Center for Nonlinear Studies

Honeycutt & Thirumalai, Biopolymers 32, 695 (1992)

θ



A bead-chain model

•  Beads on a chain in 3D: robot arm model

 similar to Cα protein models

 rod-rod angle Θ

 3 positions around axis

N=18; Θ = 120 
2212112212111122

N=6; Θ = 90
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θ



A bead-chain model

•  Beads on a chain in 3D: robot arm model

 similar to Cα protein models

 rod-rod angle Θ

 3 positions around axis

N=18; Θ = 120 
2212112212111122

N=6; Θ = 90
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Honeycutt & Thirumalai, Biopolymers 32, 695 (1992)

θ

 Homogeneous network



The “dilemma”

HOMOGENEOUS

• from studies of
conformation networks

 bead chain

 robot arm

Center for Nonlinear Studies

 



The “dilemma”

HOMOGENEOUS

• from studies of
conformation networks

 bead chain

 robot arm

SCALE FREE

• from polypeptide MD
simulations

 beta3s
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The “dilemma”

HOMOGENEOUS

• from studies of
conformation networks

 bead chain

 robot arm

SCALE FREE

• from polypeptide MD
simulations

 beta3s

 randomized version
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Gradient flow networks

 homogeneous support network
 real numbers on nodes Toroczkai & Bassler, Nature 428, 716 (2004);

ArXiv: cond-mat/0408262 (2004)
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Gradient flow networks

 homogeneous support network
 real numbers on nodes Toroczkai & Bassler, Nature 428, 716 (2004);

ArXiv: cond-mat/0408262 (2004)
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Gradient flow networks

 homogeneous support network
 real numbers on nodes Toroczkai & Bassler, Nature 428, 716 (2004);

ArXiv: cond-mat/0408262 (2004)
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Gradient flow networks

 homogeneous support network
 real numbers on nodes

<k>

gradient network is
scale-free

γ = - 1

Toroczkai & Bassler, Nature 428, 716 (2004);
ArXiv: cond-mat/0408262 (2004)
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The energy landscape
Center for Nonlinear Studies

• Energy associated with each node (configuration)
 the gradient network

→ most favorable transitions
→ T=0 backbone of the flow

 MD simulation
→ tracks the flow network

→ biased walk close to the gradient network
 trees

→ basins of local minima



The energy landscape

How do we get γ = - 2 ?
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→ basins of local minima



The energy landscape

How do we get γ = - 2 ? And funnels?

Center for Nonlinear Studies

• Energy associated with each node (configuration)
 the gradient network

→ most favorable transitions
→ T=0 backbone of the flow

 MD simulation
→ tracks the flow network

→ biased walk close to the gradient network
 trees

→ basins of local minima



Model ingredients

• A network model of configuration spaces

 network topology

 homogeneous

 degree correlations
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Model ingredients

• A network model of configuration spaces

 network topology

 homogeneous

 degree correlations

constrained (folded)
small kconf

lower energy

loose (random coil)
large kconf

higher energy

k, E increases

 how to associate energies

Center for Nonlinear Studies



Random geometric graph

• random geometric graph

 in higher D: similar to
hypercube with holes

 degree correlations

Center for Nonlinear Studies

R=0.113, <k>=20 Dall & Christensen, Phys.Rev.E 66, 026121 (2002)



Random geometric graph

• random geometric graph

 in higher D: similar to
hypercube with holes

 degree correlations k

E

• Energy proportional to
connectivity

Center for Nonlinear Studies

R=0.113, <k>=20 Dall & Christensen, Phys.Rev.E 66, 026121 (2002)



Exponent is - 2

 monotonic
increase of E with
k is sufficient

random geometric graph

γ = - 2
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Energy landscape trees

h = height of
lowest ridge

h

E
ne

rg
y

Local minima
Becker & Karplus, J.Chem.Phys. 106, 149 (1997)

Center for Nonlinear Studies



Energy landscape trees

h = height of
lowest ridge

h

E
ne

rg
y

Local minima

Random energies: golf-course E ~ k: funnel

RGG, N=5000

<k>=200

 d = 5

Becker & Karplus, J.Chem.Phys. 106, 149 (1997)
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Topological funnels

• landscapes on RG graphs with E ~ k
RGG, N=5000

<k>=200

 d = 2
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Topological funnels

• landscapes on RG graphs with E ~ k
RGG, N=5000

<k>=200

 d = 2
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Higher d or <k> 



AttractiveRepulsive

Lennard-Jones
potential

Bead-chain model
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• more realistic model: bead-chain

 configuration network
→ excluded volume

 energy: Lennard-Jones



AttractiveRepulsive

Lennard-Jones
potential

AttractiveRepulsive topological funnel

Bead-chain model
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• more realistic model: bead-chain

 configuration network
→ excluded volume

 energy: Lennard-Jones



AttractiveRepulsive

Lennard-Jones
potential

AttractiveRepulsive topological funnel

Bead-chain model
Center for Nonlinear Studies

NO FUNNEL

• more realistic model: bead-chain

 configuration network
→ excluded volume

 energy: Lennard-Jones



AttractiveRepulsive

Lennard-Jones
potential

AttractiveRepulsive topological funnel

Bead-chain model
Center for Nonlinear Studies

• changing bead sizes (Gaussian distribution)

amino-acid sizes vary along protein chains

( ), ,

NO FUNNEL

• more realistic model: bead-chain

 configuration network
→ excluded volume

 energy: Lennard-Jones



Funnels in the BC model

Best

Worst

Average
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L= 18, Θ=120°

<r> = 0.25; σ = 0.25



Mechanisms for funnels

Topological funnel:
 one low-k basin
 one way make a tight knot
 energy follows k
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excluded volume effects
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Energy-based funnel:
 several tight knots
 many low-k basins
 funnel ⇔ energy is LARGE 

for most knots 



Mechanisms for funnels

Topological funnel:
 one low-k basin
 one way make a tight knot
 energy follows k

Center for Nonlinear Studies

excluded volume effects
 determine the landscape

Energy-based funnel:
 several tight knots
 many low-k basins
 funnel ⇔ energy is LARGE 

for most knots 

hydrophobic effects
and/or charge

determine the landscape



Ongoing work

• which mechanism is (more) used in nature?

 statistical properties of sizes on BC chains
→  funnels

 BC model with charges → learn about the
energy-only funnels

 look for these rules in real proteins
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Ongoing work

• which mechanism is (more) used in nature?

 statistical properties of sizes on BC chains
→  funnels

 BC model with charges → learn about the
energy-only funnels

 look for these rules in real proteins
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Statistical rule
amino-acid sequence ↔ folding 



Conclusions

• New framework to look at protein energy landscapes

 basic topology: “Swiss-cheese” networks

 folding: biased random walk on the configuration
network

→ leads to scale-free flow networks (MD)

 funnel formation can be modeled

→ strong dependence on network topology
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Thank you!


