Erzsébet Ravasz Regan

E-Mail	eregan@bidmc.harvard.edu	Web: http://regan.med.harvard.edu
Office:	Beth Israel Deaconess Medical Center Department of Medicine 330 Brookline Avenue, RN 270H Boston, MA 02215 <i>Phone:</i> (671)-667-3040 <i>Fax:</i> (671)-667-2913	Date prepared: Apr 6, 2015
ACAD	EMIC APPOINTMENT	
]	Instructor of Medicine Division of Molecular and Vascular Medicine, Department of Me Harvard Medical School, Beth Israel Deaconess Medical Center	dicine 2007 – present Boston, MA
OTHE	R PROFESSIONAL POSITION	
	Principle Investigator Member Center for Vascular Biology Research Beth Israel Deaconess Medical Center	2007 – present Boston, MA
POSTE	OOCTORAL TRAINING	
	Postdoctoral Fellow in Biology Division of Molecular and Vascular Medicine, Department of Me Harvard Medical School, Beth Israel Deaconess Medical Center <i>Advisor:</i> William C. Aird	2006 – 2007 dicine Boston, MA
	Director Funded Postdoctoral Fellow in Physics Center for Nonlinear Studies, Los Alamos National Laboratory <i>Mentor:</i> Zoltán Toroczkai	2004 – 2006 Los Alamos, NM
EDUCA	ATION	
	Ph.D. in Physics University of Notre Dame <i>Advisor:</i> Albert-László Barabási	2000 – 2004 Notre Dame, IN
	M.S. in Physics Babeş-Bolyai University <i>Advisor:</i> Zoltán Néda	1999 – 2000 Cluj Napoca, RO
	B.S. in Physics Babeş-Bolyai University <i>Advisor:</i> Zoltán Néda	1995 – 1999 Cluj Napoca, RO
AWAR	DS AND HONORS	
]	Best Participation Award at Data and Journal Club	2012

Center for Vascular Biology Research, Beth Israel Deaconess Medical Center

Alumni Association Research Award University of Notre Dame Graduate School, University of Notre Dame	2005
Director Funded Postdoctoral Fellowship (2 years) Center for Nonlinear Studies, Los Alamos National Laboratory Mentor: Zoltán Toroczkai	2004
Fisher Graduate Fellowship (2 years) Physics Department, University of Notre Dame Advisor: Albert-László Barabási	2000
Research Scholarship Sponsored by the University of Notre Dame (2 months) Eötvös Loránd University, Budapest, Hungary <i>Advisor:</i> Albert-László Barabási	2000
Valedictorian, Hungarian Commencement, Physics Majors Babeş-Bolyai University, Cluj Napoca, Romania	1999
Socrates-Erasmus Research Scholarship (3 months) Centre national de la recherché scientifique, Grenoble, France <i>Advisor:</i> Yves Bréchet	1999
Performance Undergraduate Scholarship (1 year) Babeş-Bolyai University, Cluj Napoca, Romania	1999
Research Scholarship (2 months) Institute for Particle and Nuclear Physics, Központi Fizikai Kutatóintézet, Budapest, Hungary <i>Advisor:</i> Tamás S. Bíró	1998
1 st prize, Scientific Conference for Transylvanian Students Cluj Napoca, Romania	1998

Advisor: Zoltán Néda

RESEARCH INTERESTS

The central goal of my research program is to uncover the principles of coordination between cellular phenotypes at multiple scales of organization, and build predictive models of this coordination in endothelial health and disease. To this end, I pursue four complementary lines of inquiry:

- 1) Computational modeling of coupled biological circuits, each of which drive small-scale phenotypic switches. The goal is to predict the coordination of module phenotypes and the emergence of complex phenotypes at a larger scale.
- 2) Development of theoretical measures, computational tools, and visualization techniques to aid dynamical modeling of multi-scale, hierarchically organized phenotypes.
- 3) Measuring, modeling, and predicting the behavior of noise driven mosaic heterogeneity of the endothelium *in vitro* and *in vivo* (collaboration with William Aird).
- 4) Leveraging mosaic heterogeneity of the endothelium to identify regulatory switches in: *a*) TNFinduced inflammation, *b*) sensory-motor feedback sprouting angiogenesis (collaborations with William Aird and Katie Bentley).

RESEARCH EXPERIENCE

Instructor of Medicine, Harvard Medical School	7/2007 – present
 Identification of general principles that characterize 	Boston, MA, USA

11/2006 - 7/2007

coordination between cellular regulatory switches; development of quantitative measures that test the validity of these principles in arbitrary Boolean networks; construction of a dynamically modular model of cell cycle (Deritei et al, *in prep. for submission*, 2014; last and corresponding author).

- Exploring the role of bistability in endothelial regulatory circuits involved in sensorimotor feedback and vascular morphogenesis (Bentley et al, *Dev Cell* 2014; Bentley et al, *ALife14* 2014).

— Modeling biological noise-driven dynamic mosaic heterogeneity in the endothelium (Yuan et al, *in revision for Nature Communications*, 2014; co-corresponding).

Endothelial heterogeneity as a product of multi-stable dynamical processes on regulatory circuits (Regan & Aird, *Circ Res* 2012, corresponding author);
 Uncovering the role of a FoxO1-Akt negative feedback loop in endothelial proliferation and vascular development; transcriptional profiling of FoxO1 deficient and over-expressing endothelium *in vitro* and *in vivo*; *in silico* prediction of combinatorial transcriptional regulation; (Dharaneeswaran et al, *Circ Res*, 2014; Co-Investigator on NIH-RO1 grant).

— Metabolite profiling of Akt- and Myc-overexpressing prostate cancer samples to uncover oncogene-specific metabolic alterations (Priolo et al, *Cancer Research* 2014, in press).

- Genome-wide transcriptional profiling of phenotypic drift in freshly isolated endothelial cells (collaboration with G. Molema, W. Aird; in progress)

— Prediction of vWF transcriptional activators using conserved transcription factor binding sites and microarray compendia (Liu et al, *Blood*, 2011).

Advisor: William Aird	Boston, MA
— Genome-wide transcriptional profiling of multi-potent mouse and rat brain arachnoid cells (Wada et al, <i>in preparation</i> , 2014).	
— Identification of transcription factor binding sites in conserved regions of the VEGFR1 promoter (Jin et al, <i>Blood</i> , 2009).	
 Computational toolkit for extending bioinformatics approached to endothe lial biology (microarray compendia of cell types and tissues; endothelial com- pendium of diverse vascular beds; endothelial cell specificity of genes; en- dothelial-specific combinatorial regulation of transcription). 	
Director Funded Postdoctoral Fellow, Los Alamos National Laboratory Advisor: Zoltán Toroczkai	10/2004 – 10/2006 Los Alamos, NM
- Complex networks approach to the energy landscape of folding proteins (Ravasz et al, <i>ArXiv [q-bio.BM]</i> , 2007); minimal models of protein folding landscapes (robot arm models, gradient networks).	
Graduate Student, University of Notre Dame	8/2000 - 9/2004
Advisor: Albert-László Barabási	Notre Dame, IN
- Evolutionary conservation and lethality in the hierarchical modules of the	

E. Coli metabolism (Gerdes et al, J. Bacter, 2003).

Postdoctoral Fellow, Harvard Medical School

3

 Discovery of hierarchical modularity in metabolic reaction network structure; signature of hierarchical modularity in complex networks (Ravasz et al, <i>Science</i>, 2002); hierarchical modularity in large complex networks in society, language, and technology (Ravasz et al, <i>Phys Rev E</i>, 2002). Development of hierarchically modular scale-free network models (Ravasz et al, <i>Phys Rev E</i>, 2002); development of deterministic fractal model for scale-free networks (Barabási et al, <i>Physica A</i>, 2001). 	
 Visiting Masters Student Intern, Eötvös Loránd University Advisor: Albert-László Barabási Characterization and modeling the evolution of large scientific coauthor-ship networks (Barabási et al, <i>Physica A</i>, 2002). 	2000 Budapest, HU
 Undergraduate and Masters Student, Babeş-Bolyai University Advisor: Zoltán Néda Measurement, analysis and modeling of the transition from random to synchronized clapping following concert halls performances (Néda et al, Nature 2000; Néda et al, Phys Rev E 2000). Computer simulation of spacial stochastic resonance in Ising systems exposed to spatially periodic magnetic fields (Néda et al, Phys Rev E, 1999). 	9/1995 – 7/2000 Cluj Napoca, RO
RESEARCH SUPPORT	
 Completed: Forkhead Signaling in the Endothelium (PI: Aird - \$1,570,000 direct costs) (NIH/NHLBI - 2R01HL077348-05A1 Co-Investigator Objective: identify FoxO1-associated transcriptional networks in endothelial cells and decipher their vascular bed-specific role in gene expression. As Co-Investigator: delineate the combinatorial regulatory interplay between FoxO1 and NF-kB (<i>in silico</i> and <i>in vitro</i>); transcriptional profiling of endothelial FoxO1 overexpression and knockdown. 	04/2010 – 03/2015
 Director Funded Postdoctoral Fellowship Research Support (\$40,000) Los Alamos National Laboratory Principle Investigator Objective: study complex networks in biological systems, in particular conformation networks in protein folding. 	10/2004 – 10/2006
Pending:	
Mechanisms of mosaic heterogeneity in endothelium (PIs: Aird & Regan) NIH/NHLBI PI	2014 – 2019
 Objective: characterize the dynamics, molecular mechanism and physio- logical role of mosaic heterogeneity in vWF expression 	
Novel Aspect of vWF Gene Regulation (PI: Aird) NIH/NHLBI	2014 - 2019

Co-Investigator

Objective: characterize the mechanisms of endothelial and macrophage-specific vWF expression, the role of DNA methylation in flow-mediated repression of vWF and the role of mosaic vWF expression in cardiac health.
 As Co-Investigator: characterize functional relevance of mosaic vWF expression; model the flow-sensitive DNA methylation switch.

TEACHING EXPERIENCE

Lectures and Seminars:

Lecturer, Northeastern University Physics Department	01/2012 – 05/2012 Boston, MA
— Interactive Learning Seminars for Physics 101 (1 semester) Two 180 min seminars/week for undergraduate students.	
 Course Founder and Lecturer, Beth Israel Deaconess Medical Center Center for Vascular Biology Research — The Complexity of Cellular Networks (1 series) Fourteen 1-hour lectures for fellow faculty and postdoctoral fellows. 	03/2010 – 12/2010 Boston, MA
 Teaching Assistant, Babeş-Bolyai University Physics Department Learning Seminars for Quantum Mechanics (2 semesters) One 2-hour seminar/week for 3rd year physics majors (leading session, seing problems, grading). 	10/1999 – 02/2000 Cluj Napoca, RO lect-
 Teaching Assistant, Babeş-Bolyai University Physics Department Learning Seminars for Quantum Mechanics (1 semester) One 2-hour seminar/week for 3rd year mathematics/physics double majors (leading session, selecting problems, grading). 	02/1998 – 07/1998 Cluj Napoca, RO s
Mentoring:	
 Mentor for the NetSci High Program Educational outreach program to introduce the science of networks to hig NetSci High 2012	8/2012 – 6/2013 Boston, MA
 NetSci High 2011 (Pilot) One high school student (ML Cerulli), Winsor High School Boston, MA Objective: map the phenotypic heterogeneity of endothelial cells in dis 	10/2010 – 6/2011 stinct
segments of the kidney vasculature (weekly meetings). Mentor for the Research Science Institute (RSI)	
Summer science and engineering program to combine theory course work	and research (Center

Summer science and engineering program to combine theory course work and research (Center for Excellence in Education, hosted by MIT).

 RSI 2013 — One high school student, "XIV Liceum Ogolnoksztalcace" High School — Objective: study the combinatorial regulation of endothelial apoptosis by VEGF and TSP1 with a Boolean network model (daily meetings). 	7/2013 Boston, MA
 RSI 2012 — One high school student, "Dr. Petar Beron" High School of Mathematics — Objective: develop energy landscape visualization for Boolean regulatory network state transition graphs (daily meetings). 	7/2012 Boston, MA
Mentor for the Center for Vascular Biology Summer Student Research Progra	m
CVBR Summer Student Research Program 2012	7/2012
 One high school student, Winsor High School (volunteer) Objective: build an agent-based model of spatial patterns in heterogeneous vWF expression, observed in the mouse aorta (daily meetings). 	Boston, MA
CVBR Summer Student Research Program 2011	7/2011 - 10/2011
 One undergraduate student, University of Massachusetts (paid) Objective: develop a sampling algorithm of the state space of large Boolean regulatory networks (1-2 meetings/week). 	Boston, MA
Mentor for High school Research Volunteer	6/2011 - 6/2012
 One high school student (ML Cerulli), Winsor High School (volunteer) Objective: assemble a Boolean network model of angiogenic pattern formation (weekly meetings for 3 semesters; daily meetings during 1 month of her full-time <i>Independent Learning Experience</i> internship). 	Boston, MA
Host for Center for Nonlinear Studies Visiting Students Los Alamos National Laboratory	
— One undergraduate student, Babeș-Bolyai University (paid)	3/2006
- One graduate student, University of Notre Dame (paid)	8/2005
ADMINISTRATIVE LEADERSHIP POSITIONS	
Satellite Conference Organizer, NetSci 2015 Conference	2015
 NetSciReg'15 - Network Models in Cellular Regulation (1 day, 9 presentations) — Role: co-proposed satellite conference to NetSci organizers, designed, scheduler the conference; helped raised funding, designed website and handled registration. http://regan.med.harvard.edu/NetSciReg2015 	d and co-chaired
Satellite Conference Organizer, NetSci 2014 Conference	2014
 NetSciReg'14 - Network Models in Cellular Regulation (1/2 day, 5 presentations Role: proposed satellite conference to NetSci organizers, designed, scheduled ar conference; raised funding, designed website and handled registration. 	
 Satellite Conference Organizer, NetSci 2013 Conference NetSciReg'13 - Network Models in Cellular Regulation (1 day, 10 presentations) — Role: proposed satellite conference to NetSci organizers, designed, scheduled an conference; raised funding, designed website and handled registration. http://regan.med.harvard.edu/NetSciReg2013 	2013 nd chaired the

		2010
	Course Director - Center for Vascular Biology Research	2010
	The Complexity of Cellular Networks (14 informal, 1-hour lectures)	
	 Role: proposed, designed, scheduled and taught the course, designed course website. http://regan.med.harvard.edu/CVBR-course.php 	
	Symposium Organizer, American Physical Society March Meeting	2007
	Networks in genetic regulation (Invited symposium)	
	- Role: proposed symposium to APS, developed program, invited speakers.	
	Workshop Sponsor and Advisory Committee Member	2006
	Optimization in Complex Networks	
	Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM	
GRAN	IT REVIEW ACTIVITIES	
	Grant Review Panelist, National Science Foundation	2010
	Advancing Theory In Biology, Directorate of Biological Sciences	
	Ad Hoc Grant Reviewer, National Science Foundation	2009
	Condensed Matter and Materials Theory, Division of Materials Research	
	Ad Hoc Grant Reviewer, Defense Threat Reduction Agency	2007, 2008
	Basic Research Proposals on Understanding Target Network Response to WMD Attack	
EDITO	ORIAL ACTIVITIES	
	Reviewer 20	04 – present
	General: Proceedings of the National Academy of Sciences, Nature Biotechnology	1
	Systems/Computational Biology: PLOS Computational Biology, BMC Systems Biology	,
	Bioinformatics, Journal of Biological Systems, Theoretical Biology, Journal of the Royal	l
	Society Interface, NeuroComputing	
	Statistical Physics / Network Science: Physical Review E, Biophysics, Biophysical Jour	-
	nal, Journal of Physica A, Physica D, The European Physical Journal B	
	Endothelial Biology and Biomedicine: FEBS Letters, Frontiers in Cancer Endocrinolo-	
	gy, Circulation, Circulation: Cardiovascular Genetics, Journal of Thrombosis and	
	Haemostasis	
PROF	ESSIONAL SOCIETIES	
	American Physical Society	2002, 2007

OUTREACH ACTIVITIES

Invited Presentation, Mikes Kelemen High School (Alma Mater)	2008
Where is the physics in this? (in Hungarian)Sep	siszentgyörgy, RO
General presentation about the role of physics in understanding biological systems	
Invited Presentation, "Tusványos" Summer University and Festival	2007
A physicist in the world of proteins: networks and the blocks of life (in Hungarian)	Bálványos, RO
General presentation about network approaches to protein folding.	

PUBLICATIONS

Peer Reviewed Articles

Citations: Web of Science [WoS] - 3,741; Google Scholar - 7,476 H-index: Web of Science - 11; Google Scholar -13

- 1. Dharaneeswaran, H. Abid R, Yuan L, Dupuis D, Beeler D, Spokes KC, Janes L, Sciuto T, Kang P, Jaminet SC, Dvorak A, Grant MA, **Ravasz Regan E**, Aird WC, FoxO1-mediated Activation of Akt plays a critical role in vascular homeostasis, *Circulation Research* 2014; 115:238-51.
- 2. Bentley K, Philippides A, **Ravasz Regan E**. Do Endothelial Cells Dream of Eclectic Shape? *De-velopmental Cell* 2014; 29:146-158. (Citations: WoS 3, Google Scholar 5)
- 3. Deritei D, Lazar Zs, Papp I, Jarai-Szabo F, Sumi R, Varga L, **Ravasz Regan E**, Ercsey-Ravasz MM, Community detection by graph Voronoi diagrams, *New Journal of Physics* 2014; 16:063007.
- 4. Bentley K, Harrington K, **Ravasz Regan E**, Can active perception generate bistability? Heterogeneous collective dynamics and vascular patterning, *ALife14: The 14th International Conference on the Synthesis and Simulation of Living Systems*, 2014; 14:328-335.
- Priolo C, Pyne S, Rose J, Ravasz Regan E, Zadra G, Photopoulos C, Cacciatore S, Schultz D, Scaglia N, McDunn J, DeMarzo A, Loda M. AKT1 and MYC Induce Distinctive Metabolic Fingerprints in Human Prostate Cancer. *Cancer Research* 2014 (in press; doi: 10.1158/0008-5472. CAN-14-1490).
- Kurniati NF, Jongman RM, von Hagen F, Spokes KC, Moser J, Ravasz Regan E, Krenning G, Moonen JRAJ, Harmsen MC, Struys MMRF, Hammes HP, Zijlstra JG, Aird WC, Heeringa P, Molema G, van Meurs M. The flow dependency of Tie2 expression in endotoxemia. *Intensive Care Medicine* 2013; 39:1262-1271 (Citations: WoS - 2, Google Scholar - 3).
- 7. **Ravasz Regan E***, Aird WC. Dynamical systems approach to endothelial heterogeneity. *Circulation Research* 2012; 111:110-30 (*corresponding author; Citation: WoS - 22, Google Scholar - 25).
- 8. Liu J, Yuan L, Molema G, **Regan E**, Janes L, Beeler D, Spokes KC, Minami T, Oettgen P, Aird WC, Vascular bed-specific regulation of the von Willebrand factor promoter in the heart and skeletal muscle, *Blood* 2011; 117(1):342-51 (Citations: WoS - 9, Google Scholar - 12).
- Jin E, Liu J, Suehiro J, Okada Y, Yuan L, Nikolova-Krstevski V, Yano K, Janes L, Beeler D, Spokes KC, Regan E, Shih SC, Oettgen P, Minami T, Aird WC. Differential Roles for ETS, CREB and EGR Binding Sites in Mediating VEGF Receptor 1 Expression in Vivo, *Blood* 2009; 114(27): 5557-66 (Citations: WoS - 7, Google Scholar - 9).
- 10. Gerdes SY, Scholle MD, Campbell JW, Balázsi G, Ravasz E, Daugherty MD, Somera AL, Kyrpides NC, Anderson I, Gelfand MS, Bhattacharya A, Kapatral V, D'Souza M, Baev MV, Grechkin Y, Mseeh F, Fonstein MY, Overbeek R, Barabási A-L, Oltvai ZN, Osterman AL. Experimental Determination and System Level Analysis of Essential Genes in Escherichia coli MG1655. *Journal of Bacteriology* 2003; 185, 5673 (Citations: WoS - 345, Google Scholar - 750).
- 11. **Ravasz E**, Barabási AL. Hierarchical organization in complex networks. *Phys Rev E* 2003; 67:026112 (Citations: WoS 661, Google Scholar 1281).
- Farkas I, Derényi I, Jeong H, Néda Z, Oltvai ZN, Ravasz E, Schubert A, Barabási AL, Vicsek T. Networks in life: Scaling properties and eigenvalue spectra. *Physica A* 2002; 314:25 (Citations: WoS - 37, Google Scholar - 78).
- 13. Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabási AL. Hierarchical organization of modularity in metabolic networks. *Science* 2002; 297:1551 (Citations: WoS - 1501, Google Sch. - 2595).

- Barabási AL, Jeong H, Néda Z, Ravasz E, Schubert A, Vicsek T. Evolution of the social network of scientific collaborations. *Physica A* 2002; 311:590 (Citations: WoS - 671, Google Scholar -1652).
- 15. Barabási AL, **Ravasz E**, Vicsek T. Deterministic scale-free networks. *Physica A* 2001; 299:559 (Citations: WoS 174, Google Scholar 370).
- 16. Néda Z, **Ravasz E**, Vicsek T, Bréchet Y, Barabási AL. Physics of the rhythmic applause. *Phys Rev E* 2000; 61:6987 (Citations: WoS 62, Google Scholar 128).
- 17. Néda Z, **Ravasz E**, Vicsek T, Bréchet Y, Barabási AL. The sound of many hands clapping, *Nature* 2000; 403:850 (Citations: WoS 209, Google Scholar 332).
- 18. Néda Z, Rusz A, **Ravasz E**, Lakdawala P, Gade PM. Spatial stochastic resonance in one-dimensional Ising systems. *Phys Rev E* 1999; 60:R3463 (Citations: WoS 11, Google Scholar 12).

Book Chapters:

- Ravasz Regan E. Hierarchical Modularity in Biological Networks. In: Buchanan M, Calderelli G, De Los Rios P, Rao F, Vendruscolo M (eds). *Networks in Cell Biology*. Cambridge University Press; 2010 (SBN-13: 978-0-521-88273-6).
- 2. Ravasz Regan E. Networks: Structure and Dynamics. In: Meyers RA, editor in chief. *Encyclopedia of Complexity and System Science*. Springer; 2009. p. 6048-6066 (SBN-13: 978-0-387-75888-6).
- 3. **Ravasz E**. Detecting hierarchical modularity in biological networks. In: McDermott J, Samudrala R, Bumgarner R, Montgomery K (eds). *Computational Systems Biology*. Humana Press; 2009. p. 145-160 (SBN-10: 1588299058) (Citations: WoS 11, Google Scholar 28).
- Wuchty S, Ravasz E, Barabási AL. The Architecture of Biological Networks. In: Deisboeck TS, Yasha Kresh J, Kepler TB (eds). *Complex Systems Science in Biomedicine*. New York: Kluwer Academic Publishing; 2005. p. 165-181 (Citations: WoS - 5, Google Scholar - 75).

Proceedings:

- Barabási AL, Dezső Z, Ravasz E, Yook SH, Oltvai ZN. Scale-free and hierarchical structures in complex networks. In: AIP Conf Proc 2003; 661:1. *Proceedings of Modeling of Complex Systems: Seventh Granada Lectures*; 2002; Granada, Spain. New York: Melville; 2003 (Citations: WoS - 14, Google Scholar - 97).
- Barabási AL, Ravasz E, Oltvai ZN. Hierarchical Organization of Modularity in Complex Networks. In: Pastor-Satorras R, Rubi JM, Diaz-Guilera A (eds). *Complex Networks. Lecture Notes in Physics* 2003; 625:46. Proceedings of the XVIII Sitges Conference on Statistical Mechanics; 2002; Sitges, Spain. Berlin: Springer; 2003 (Citations: WoS - 4, Google Scholar - 17).

Thesis:

Ravasz E. Evolution, hierarchy and modular organization in complex networks. University of Notre Dame, Notre Dame, IN, 2004 (Google Scholar - 6).

Submitted or in Revision:

 Yuan L, Chan G, Beeler D, Janes L, Spokes KC, Mojiri A, Adams WJ, Sciuto T, Garcia-Cardeña G, Molema G, Jahroudi N, Marsden PA, Dvorak A, **Ravasz Regan E***, Aird*, WC, Organ-specific stochastic phenotype switching is required for endothelial health, (*in revision for Nature Communications*; *co-corresponding authors) 2014.

In Preparation or Posted on ArXiv:

- 1. Deritei D, Ercsey-Ravasz MM, **Ravasz Regan E***, Principles of dynamical modularity in biological regulatory networks, (*in preparation for Cell*, theory paper; *corresponding author), 2014.
- 2. Wada H, Ii M, Kohro T, Sciuto TE, Ravasz Regan E, Hall S, Adams W, Li D, Stratman AN, Lebastchi A, Sekino M, Ohta Y, Hamakubo T, Ihara S, Asahara T, Ueno S, Losordo DW, Carman CV, Gunel M, Tellides G, Weiler H, Shih SC, Davis G, Garcia-Cardena G, Kodama T, Dvorak AM, Wada Y, Aird WC, The brain arachnoid exhibits a mixed vascular cell phenotype and provides an anatomical niche for multi-lineage progenitor cells, (*in preparation*) 2014.
- 3. **Ravasz E**, Gnanakaran S, Toroczkai Z. Network Structure of Protein Folding Pathways, 2007, arX-iv:0705.0912 [q-bio.BM] (Citations: Google Scholar 6).

PRESENTATIONS

Invited Conference and Workshop Presentations:

From the Clinic to Partial Differen- tial Equations and Back: Emerging challenges for Cardiovascular Math- ematics Institute for Computational and Exper- imental Research in Mathematics	Endothelial Cell Heterogeneity - Nature, Nurture or Neither?	2014 Providence, MA
NetSciEd 2013 Satellite Symposium on Education @ NetSci2013 - International Confer- ence on Network Science	How to Build Your Very Own Land- scape?	2013 Copenhagen, Denmark
NetSciEd 2012 Satellite Symposium on Education @ NetSci2012 - International Confer- ence on Network Science	Building a Boolean Network Model of Angiogenic Tip and Stalk cell formation	2012 Chicago, IL
6 th Annual Vascular Biology Re- search Retreat Center for Vascular Biology Research Beth Israel Deaconess Medical Center	Functional Modules of Endothelial Cells Hidden in Microarray Data	2010 N. Falmouth, MA
International Workshop on Sto- chastic Phenomena 2 nd Transylvanian Summer School	At the Boundary of Signaling and Transcription	2007 Cluj Napoca, RO
International Workshop on Complex Systems and Networks 1 st Transylvanian Summer School	Networks in Protein Folding	2007 Szováta, RO
NetSci 2007, International Work- shop and Conference on Network Science	Networks in Protein Folding	2007 Queens, NY

Computational Methods in Modern Physics (in Hungarian) Hungarian Technical Scientific Society of Transylvania, Babeş-Bolyai Univ.	Networks in Protein Folding (in Hungarian)	2006 Cluj Napoca, RO
Optimization in Complex Networks Center for Nonlinear Studies Los Alamos National Laboratory	Networks in Protein Folding	2006 Los Alamos, NM
News, Expectations and Trends in Statistical Physics 3rd Next Sigma-Phy International Conference	Hierarchical Modularity in Complex Networks	2005 Kolymbari, Greece
Arizona Days Los Alamos National Laboratory	Hierarchical Modularity in Meta- bolic Networks	2005 Tucson, AZ
Invited Seminars:		
Systems and Computational Biology Departmental Seminar Albert Einstein College of Medicine Yeshiva University	Principles of dynamical modularity in biological regulatory networks	2014 New York, NY
Channing Network Science Seminar Brigham & Women's Hospital Harvard Medical School	Principles of dynamical modularity in biological regulatory networks	2014 Boston, MA
Biochemistry and Molecular Biology Seminar The College of Wooster	Dynamical Modularity in Cellular Regulation	2014 Wooster, OH
NetSci High 2014 Summer Work- shop Boston University	Dynamical Modularity in Cellular Regulation	2014 Boston, MA
Vascular Biology Research Seminar Center for Vascular Biology Research Beth Israel Deaconess Medical Center	The Cell Orchestrates Multi-Faceted Phenotypic Decisions via Modular Dynamics	2014 Boston, MA
NetSci High 2013 Summer Work- shop Boston University	Dynamical Modularity in Cellular Regulation	2013 Boston, MA
Physics Department Special Seminar Department of Physics Babeş-Bolyai University	Dynamical Modularity - the organizing principle of cellular regulation at multiple scales	2013 Cluj Napoca, RO
Joint Network Seminar Center for Complex Network Research Northeastern University (Boston U.)	Dynamical Modularity in Regulation of Mammalian Cell Proliferation	2012 Boston, MA

NetSci High 2012 Summe shop Boston University	r Work-	Dynamical Modularity in Cellular Regulation	2012 Boston, MA
Physics Department Spec Department of Physics Babeş-Bolyai University	ial Seminar	Hierarchical Organization of the Endothelial Regulatory System	2011 Cluj Napoca, RO
Condensed Matter Physic Series Department of Physics University of Notre Dame	es Seminar	At the Boundary of Signaling and Transcription	2008 Notre Dame, IN
Vascular Biology Researc Center for Vascular Biolog Beth Israel Deaconess Med	y Research	At the boundary of VEGF signaling and transcription	2008 Boston, MA
Vascular Biology Researc Center for Vascular Biolog Beth Israel Deaconess Med	y Research	A dynamic model of VEGF signaling	2007 Boston, MA
Interdisciplinary Medicin Series Division of Interdisciplinar Beth Israel Deaconess Med	y Medicine	Networks in Protein Folding	2007 Boston, MA
Job Interview Seminar Center for Systems Biology Institute for Advanced Stud	ý	Networks in Protein Folding	2005 Princeton, NJ
Job Interview Seminar Division of Molecular and Medicine Beth Israel Deaconess Med		Networks in Protein Folding	2005 Boston, MA
CNLS Seminar series Center for Nonlinear Studie Los Alamos National Labo	es	Protein Folding Networks	2005 Los Alamos, NM
Job Interview Seminar Center for Nonlinear Studie Los Alamos National Labo		Hierarchical Organization of Modu- larity in Complex Networks	2004 Los Alamos, NM
Job Interview Seminar Brookhaven National Labo	ratory	Hierarchical Organization of Modu- larity in Complex Networks	2004 Upton, NY
Contributed Talks:			
NetSciReg'13 - Network M in Cellular Regulation @ NetSci2013 - Internation Conference on Network Sc	Ce nal	vnamical Modularity of Mammalian ell Proliferation	2013 Copenhagen, Denmark

NetSci - International Confer- ence on Network Science	2012 - Dynamical Modularity in Regula- tion of Endothelial Cell Life and Death	2010-2012 Chicago, IL
	2011 - Hierarchical Organization of the Endothelial Regulatory System	2011 Budapest, HU
	2010 - Hierarchical Genetic Regulation Hidden in Microarray Data	2010 Boston, MA
CVBR Journal Club Center for Vascular Biology Research Beth Israel Deaconess Medical Center	2014 - Dynamics and Memory of Hete- rochromatin in living cells	2009 - 2014 Boston, MA
	2013 - A Two-Dimensional ERK-AKT Signaling Code for an NGF-Triggered Cell-Fate Decision	
	2012 - Asymmetric cancer cell division regulated by AKT	
	2010 - Transcriptome-wide Noise Con- trols Lineage Choice in Mammalian Progenitor Cells	
	2009 - Balance between Maintaining a Stable Vascular Bed and Responding to Stress	
CVBR Data Club Center for Vascular Biology Research Beth Israel Deaconess Medical Center	2014 - Bistable DNA Methylation is Re- sponsible for vWF mosaic heterogeneity	2010 - 2014 Boston, MA
	2013 - Mammalian Proliferation is Dy- namically Modular	
	2012 - Dynamical systems approach to endothelial heterogeneity	
	2011 - Dynamical modularity links struc- ture to function in cellular regulation	
	2010 - Landscape of an Endothelial Cell	
APS March Meeting American Physical Society	Evolution of the Social Network of Scien- tific Collaborations	2002 Indianapolis, IN

REFERENCES

Endothelial biomedicine:

William C. Aird, M.D.

Professor of Medicine Director, Center for Vascular Biology Research Department of Medicine Beth Israel Deaconess Medical Center Harvard Medical School Address: 330 Brookline Avenue, RN-237, Boston, MA 02215 Phone: 617-667-1033 Fax: 617-667-1035 Email: waird@bidmc.harvard.edu

Complex networks:

Zoltán Toroczkai, Ph.D.

Professor of Physics, Computer Science and Engineering Co-Director, Interdisciplinary Center for Network Science and Applications Physics Department University of Notre Dame *Address:* 225 Nieuwland Science Hall University of Notre Dame Notre Dame, IN 46556-5670 *Phone:* 574-631-2618 *Fax:* 574-631-2618 *Fax:* 574-631-5952 *Email:* toro@nd.edu

Modeling in vascular biology:

Katie Bentley, Ph.D.

Assistant Professor of Pathology Department of Pathology Center for Vascular Biology Research Beth Israel Deaconess Medical Center Harvard Medical School *Address:* 330 Brookline Avenue, RN-231, Boston, MA 02215 *Phone:* 617-667-0637 *Fax:* 617-667-2913 *Email:* kbentley@bidmc.harvard.edu

Harold F. Dvorak, M.D.

Mallinkrodt Professor of Pathology Department of Pathology Center for Vascular Biology Research Beth Israel Deaconess Medical Center Harvard Medical School *Address:* 330 Brookline Avenue, RN-227C, Boston, MA 02215 *Phone:* 617-667-0654 *Fax:* 617-667-3616 *Email:* hdvorak@bidmc.harvard.edu

Albert-László Barabási, Ph.D.

Robert Gray Doge Professor of Network Science Director, Center for Complex Network Research Departments of Physics Departments of Biology College of Computer and Information Sciences Northeastern University *Address:* 110 Forsyth Street, 111 Dana Research Center, Boston, MA 02115 *Phone:* 617-373-2355 *Fax:* 617-373-4385 *Email:* alb@neu.edu