
8. Modeling the full 
cellular regulatory system 1

Warning: Statistical physics. 
It only works on average.

http://regan.med.harvard.edu/CVBR-course.php



Gap between genes and phenotypes
• Functional annotation

• works well for structural proteins: ribosome, cytoskeleton
• regulatory processes & complex phenotypes: trouble 
• “gene is involved in ...” problem

cytokinesis appeared to be specifically affected and cells contained two
nuclei and four centrosomes (PTGER2, ECT2, CABP7, C13orf23).
Binucleated cells either remained viable and ceased dividing
(PTGER2) or formed multipolar spindles that resulted in aberrant
chromosome segregation in the next cycle which, when coupled to
another failed cytokinesis, resulted in large polylobed nuclei (ECT2,
CABP7, C13orf23). Together this high-resolution assay for spindle
formation, chromosome alignment and segregation demonstrates that
the phenotypic predictions derived from the automatic mining of the
primary genome-wide screen are valid. In addition, the analysis of
phenotype development with high temporal resolution in single cells
directly shows the causal relationship of different phenotypic classes.
Thus, the detailed phenoprints of the primary RNAi screen provide
mechanistic hypotheses for the observed phenotypes that can now be

pursued in targeted biochemical and cell biological experiments for
each gene. As exemplified by our imaging of the spindle microtubules,
such future experiments should ideally complement the chromosome
visualization assay of the primary screen with information about other
key elements of the mitotic machinery, such as centrosomes, spindle
microtubules and kinetochores.

Scoring of cell survival and cell migration phenotypes

The power of time-lapse microscopy makes our quantitative pheno-
typic profiles recorded for siRNAs targeting the whole genome
informative about many other cellular functions that cannot be
scored in endpoint assays, such as the rate of cell proliferation, cell
migration and dynamic changes in nuclear structure. To provide
scores for siRNAs belonging to these and additional phenotypic
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Figure 4 | Time-resolved heat map. a, The quantitative time-resolved
phenoprints for all validated mitotic hit genes (572) can be used for
phenotypic clustering, taking into account both the penetrance values and
the joint temporal evolution in several phenotypic classes illustrated at the
top of each column. Colour code at the right: reference genes
(Supplementary Table 5) with known function are marked in blue
(cytokinesis) or green (early mitotic phenotype). On the right, interesting
clusters are highlighted. On the left, the dendrogram corresponding to the
hierarchical clustering is shown. The same analysis has been performed for

the whole set of potential mitotic genes (1,249) in Supplementary Fig. 6. The
single gene resolution heat map is available as Supplementary Fig. 7. b, Early
mitotic phenotypes (magnified view of the red rectangle at the top of panel
a); the rescued gene TOR1AIP1 is highlighted in red. c, Binuclear
phenotypes (magnified view corresponding to the red rectangle at the
bottom of panel a); the rescued gene CABP7 is highlighted in red. In b and
c, the numbers in parentheses represent the identifiers of the siRNAs that
produced the phenotypic profile illustrated in the heat map.
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• An example: cell cycle
• siRNA for ~ 
21,000 genes
• automatic time-
lapse microscopy
• automatic 
scoring of 
aberrant cell 
cycle

1,249 
potentially mitotic 

genes 
(572 validated)



What is missing?

ZOOM

• KEGG pathways:
• great with metabolism
• OK with signaling cascade START, 
no detail of what happens at the 
level of transcription!

• Connections matter
• cell-wide interaction networks are 
becoming available
• TROUBLE: “small world” means the 
WHOLE CELL is within a few interactions 
of almost any gene! 

Great assays 
for phenotype

Great 
assays for 

genes



pos. regul. of cell migration in sprouting angiogenesis

• Gene Ontology
• hierarchically organized (ZOOM ?)
• guided by human mind dictated principles, 
probably different from the way function is 
organized in the cell! 

angiogenesis

reg. of locomotion cell migration



What is function, anywhay?
• Something the cell DOES (for a biological purpose)

• most definitions are evolutionary
• only useful for human categorizations

Organization 
(strcuture, dynamics) of the 

network?

• Functional gene ontologies described in an abstract 
of a review:
 “GO represents function from the gene's eye view, in 
relation to a large and growing context of biological 
knowledge at all levels.”
“Pathway ontologies represent function from the point of 
view of biochemical reactions and interactions, which are 
ordered into networks and causal cascades.”

nodes

links



What is function? Physics is not 
accostumed to this concept...

Physics
What can we 
do with this?

Figure out 
structure of 
matter or 
system

Understand 
its properties

Molecular biology

What is the 
biological 

phenotype?

Figure out the 
underlying 
structure

Phenotype 
under various 

conditions



1. A robust state or behavior
!•! Environmental variability (noise)
!•! Recognizable within different 

contexts
Examples:
!•! cell types
!•! cell cycle, apoptosis

Some mandatory properties of 
functionstudy an ensemble of random networks (13, 14) that have the

same numbers of nodes and links in each color as in the cell-cycle
network. We find that random networks typically have more

attractors (fixed points and limit cycles), with the average
number being 14.28. The sizes of the basins of attraction in the
random networks have a power-law distribution, as shown in Fig.

Table 2. Temporal evolution of protein states for the simplified cell-cycle network of Fig. 1B

Time Cln3 MBF SBF Cln1,2 Cdh1 Swi5
Cdc20 and

Cdc14 Clb5,6 Sic1 Clb1,2 Mcm1!SFF Phase

1 1 0 0 0 1 0 0 0 1 0 0 START
2 0 1 1 0 1 0 0 0 1 0 0 G1

3 0 1 1 1 1 0 0 0 1 0 0 G1

4 0 1 1 1 0 0 0 0 0 0 0 G1

5 0 1 1 1 0 0 0 1 0 0 0 S
6 0 1 1 1 0 0 0 1 0 1 1 G2

7 0 0 0 1 0 0 1 1 0 1 1 M
8 0 0 0 0 0 1 1 0 0 1 1 M
9 0 0 0 0 0 1 1 0 1 1 1 M

10 0 0 0 0 0 1 1 0 1 0 1 M
11 0 0 0 0 1 1 1 0 1 0 0 M
12 0 0 0 0 1 1 0 0 1 0 0 G1

13 0 0 0 0 1 0 0 0 1 0 0 Stationary G1

The right column indicates the cell-cycle phases. Note that the number of time steps in each phase do not reflect its actual duration.

Fig. 2. Dynamical trajectories of the 1,764 protein states (green nodes) flowing to the G1 fixed point (blue node). Arrows between states indicate the direction
of dynamic flow from one state to another. The cell-cycle sequence is colored blue. The size of a node and the thickness of an arrow are proportional to the
logarithm of the traffic flow passing through them.

Li et al. PNAS " April 6, 2004 " vol. 101 " no. 14 " 4783
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211 = 2048 
states

S1
where aij ! ag for a green arrow from protein j to protein i and
aij ! ar for a red arrow from j to i. We first focus on the case
where all of the other checkpoints are always off, except that
of the cell size. That is, the cell size checkpoint will act as a start
signal, whereas other checkpoints will always let the ‘‘traffic’’
pass when it come to it. We therefore arrive at a slightly
simplified network shown in Fig. 1B, with 11 nodes (plus a
signal node). We have also added ‘‘self-degradation’’ (yellow
loops) to those nodes that are not negatively regulated by
others. [This is a simplification for the actual degradation
processes. See supporting information for details.] The deg-
radation is modeled as a time-delayed interaction: if a protein
with a self yellow arrow is active at time t (Si(t) ! 1) and if its
total input is zero from t " 1 to t ! t " td, it will be degraded
at t ! t " td, i.e., Si(t " td) ! 0. The results presented below
were obtained with ag ! #ar ! 1 and td ! 1. As will be
discussed later, the overall dynamic properties of the network
are not very sensitive to the choice of these parameters.

Fixed Points. We use the dynamic model described above to study
the time evolution of the protein states. First, we study the
attractors of the network dynamics by starting from each of the
211 ! 2,048 initial states in the 11-node network of Fig. 1B. We
find that all of the initial states eventually f low into one of the
seven stationary states (fixed points) shown in Table 1. Among
the seven fixed points, there is one big fixed point attracting 1,764
or $86% protein states. Remarkably, this super stable state is
the biological G1 stationary state. The advantage for a cell’s
stationary state to be a big attractor of the network is obvious:
the stability of the cell state is guaranteed. Under normal

conditions, the cell will be sitting at this fixed point, waiting for
the signal for another round of division.

Biological Pathway. Next, we start the cell-cycle process by ‘‘ex-
citing’’ the G1 stationary state with the cell size signal, and
observe that the system goes back to the G1 stationary state. The
temporal evolution of the protein states, presented in Table 2,
indeed follows the cell-cycle sequence, going from the excited G1
state (the START) to the S phase, the G2 phase, the M phase,
and finally to the stationary G1 state. This is the biological
trajectory or pathway of the cell-cycle network.

To investigate the dynamical stability of this biological path-
way, we study the dynamic trajectories of all 1,764 protein states
that will f low to the G1 fixed point. In Fig. 2, each of these protein
states is represented by a dot, with the arrows between them
indicating dynamic flows from one state to another. The bio-
logical pathway is colored in blue and so is the node representing
the G1 stationary state. We see that the dynamic flow of the
protein states is convergent onto the biological pathway, making
the pathway an attracting trajectory of the dynamics. With such
a topological structure of the phase diagram of protein states, the
cell-cycle pathway is a very stable trajectory; it is very unlikely
for a sequence of events, starting at the beginning (or at any
other point) of the cell-cycle process, to deviate from the
cell-cycle pathway. Interestingly, the topology of the converging
trajectories shown in Fig. 2 is reminiscent of the converging
kinetic pathways in protein folding where a protein sequence is
facing the challenge of finding the unique native state among a
huge number of conformations (10–12).

Comparison with Random Networks. To investigate how likely a big
fixed point and a converging pathway can arise by chance, we

Fig. 1. (A) The cell-cycle network of the budding yeast. (B) Simplified cell-cycle network with only one checkpoint ‘‘cell size.’’

Table 1. The fixed points of the cell-cycle network

Basin size Cln3 MBF SBF Cln1,2 Cdh1 Swi5 Cdc20 Clb5,6 Sic1 Clb1,2 Mcm1

1,764 0 0 0 0 1 0 0 0 1 0 0
151 0 0 1 1 0 0 0 0 0 0 0
109 0 1 0 0 1 0 0 0 1 0 0

9 0 0 0 0 0 0 0 0 1 0 0
7 0 1 0 0 0 0 0 0 1 0 0
7 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0

Each fixed point is represented in a row. The first column is the size of the basin of attraction for the fixed point; the other 11 columns
show the protein states of the fixed point. The protein states of the biggest fixed point correspond to that of the G1 stationary state.

4782 ! www.pnas.org"cgi"doi"10.1073"pnas.0305937101 Li et al.

Attractor dynamics and the consequences
for the cell

Inherent stability of attractors

The fact that many disparate, often nonspecific stimuli
can lead to one same physiological cellular “program”
such as differentiation, growth, and apoptosis, all charac-
terized by distinct gene activity patterns, strongly sug-
gests that in real cells these cellular states correspond to
attrators. A central property of both attractor states, as
well as of real cellular states, is their stability to minimal

perturbations. In simulations such minimal perturbations
of attractor states are transient, externally caused altera-
tions in the activity state of individual units, i.e., flipping
of the value of a gene/protein from 0 to 1 or vice versa.
Most of such minimal perturbations on randomly chosen
genes/proteins lead to new GAPs that are logically for-
bidden, but reside in the same basin of attraction, and
therefore the system flows back to the original attractor
from which it departed. In a few instances, if the basin of
attraction is rather small, or the perturbation affects a
gene with a high number of outputs (representing a “hi-
erarchically important” or “master” gene, see below), the
GAP can move into a “neighboring” attractor upon per-
turbation (large arrows in Fig. 3). In general, the larger
the size of the basin, the more stable is its attractor and
the more likely it is to be reached by the network when it
is put into a randomly chosen (forbidden) GAP. Numeri-
cal simulations by Kauffman [18] have shown that the
genomic network resumes the original attractor state in
80–90% of minimal perturbations.

The stability of attractor states is physiologically im-
portant for it protects the cell from fluctuations in the in-
tracellular concentrations of regulatory molecules and al-
lows the cell to maintain its functional state within the
tissue environment.

Transitions between attractors: a role for signal 
transduction

In contrast to minimal perturbations, for attractors to
consistently undergo a transition to another particular at-
tractor requires major (multiple-gene) perturbations that
typically consist of flipping the activity state of a very
specific set of genes/proteins, or of a master gene. For
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Fig. 3 State space with the three attractors. Scheme of the state
space with the GAPs of a hypothetical, typical network, illustrat-
ing the “attractor landscape” in the notation proposed by [28].
Note that, for clarity, only a small fraction of GAPs is shown. Ev-
ery gray dot represents a unique, transient (i.e., unstable) GAP, as
illustrated in Fig. 2B, in the state space. The GAPs are connected
by arrows that form the trajectories along which the GAPs are dis-
placed as the states of the individual units are updated. The state
space is divided (dotted line) into three basins of attraction with an
attractor (black dots) at the center of each. Note that a GAP has
only one successor state, but many GAPs can converge onto one
GAP. This convergence creates order and stability in networks.
The trajectories end at the attractors, which represent the GAPs
defining the cellular states (see text). For the cell cycle, the attrac-
tor oscillates between a few GAPs, corresponding to the various
gene activation patterns that occur at the different phases of the
cell cycle. For differentiation and apoptosis, the attractor is a sin-
gle GAP. The size of the basins of attractions is correlated with the
stability of the respective attractors. The arrows at the attractor
boundaries and their size illustrate the probabilities of transition
between the attractors upon minimal random perturbations. In this
network the differentiation attractor is the largest, representing the
normal, quiescent cell in the mature tissue. Only very specific
stimuli (major perturbations corresponding to signal transduction
cascades) can cause the GAP to switch into the smaller growth or
apoptosis attractors

 S. Huang. Gene expression profiling, genetic networks, and cellular states: an integrating 
concept for tumorigenesis and drug discovery. J. Mol. Med, 77(6):469–480, 1999.

2. A choice in function (multistability)
!•! Functions need to be controlled: 

turned ON - OFF, modulated
!•! Responsiveness to specific stimuli
Examples:
!•! cell type to turn into
!•! cell cycle or apoptosis



A minimal model: Boolean networks
Kauffman, S, Homeostasis and 
differentiation in random genetic control 
networks, Nature 224, pp 177, 1969

• Random network
• State of the system, or gene 

activity profile:    
(0,1,1,0,0,1,1,1,0,...,0)

• Random Boolean rules 
➡  p - prob. output value 1

Basic structure of boolean networks

In the boolean idealization a genetic network consists of
a number (n) of “genes” (used here in a wider sense to
include also the encoded protein) which can either be ac-
tive (“on”: the gene is expressed and its product is in an
active conformation) or inactive (“off”; Fig. 1). The
genes/proteins interact with each other in a way precise-
ly determined by the highly specific molecular interac-
tions. These in turn define the interconnections between
all the genes/proteins of the genome, which together
form a “wiring diagram” for a particular genome (Fig.
2A).

The smallest functional unit of the network is the
gene (with its encoded protein) which can be regarded as
an information processing unit [27] (Fig. 1). A gene X
(or protein X) which regulates other genes/proteins,

transforms its inputs, the regulatory factors that bind to
X as defined by the wiring diagram, into an output,
which is the activity state of X itself in acting on its
“downstream” substrates. For every gene/protein a logi-
cal (boolean) function determines how the activity pat-
tern of the set of input genes/proteins (A, B in Fig. 1) is
to be translated into the output. Figure 1 shows one ex-
ample of such a logical function. Thus, a change in the
activity status of any unit, for example, the flipping of an
“on” state (=1) to an “off” state (=0) for a given gene,
has “downstream” effects – as determined by the struc-
ture and logics of its connections. Boolean functions can
be much more complex and involved than the simple
two-input example of Fig. 1, such that essential details of
regulation, such as differential affinity of competing li-
gands, hierarchical order of binding during assembly of
multimeric complexes, and multiple thresholds for vari-
ous catalytic activities can be absorbed in the boolean
formalism. However, even a network with simple bool-
ean functions gives rise to a global behavior that recapit-
ulates the dynamic features of the regulation of cellular
states.

In the language of genetic networks one can define a
state of a cell at a given time point by the activity status
of each of the individual genes in the genome, which
collectively form a genome-wide gene activity pattern,
or profile (GAP). Such a profile of the activity states, or
GAP, of all the individual genes of a genome with n
genes can be depicted as a string of length n, such as
(1100111...110), which defines for a given cell a network
state at a given moment (Fig. 2B). Graphically, each
GAP represents one point (dots in Fig. 3) in the n-dimen-
sional state space formed by the set of all possible
GAPs. Similar GAPs (i.e., those that differ in the activity
value at only one or a few genes) lie close together in the
state space. In a genome with n=100,000 genes (the esti-
mated size of the human genome), if each gene can only
be either active or inactive, the state space contains
2n=2100,000=1030,000 GAPs, or different strings of length n
consisting of a combination of 1s and 0s. Thus the num-
ber of combinatorically possible GAPs that a genome
can generate is astronomical!

However, computer simulations [18] show that for a
certain class of random genetic networks whose wiring

472

Fig. 1A,B The basic element of a boolean network: genes as in-
formation processing unit. A An example of a basic information
processing unit, X, of a genetic network, and its regulation. Every
square box represents a unit, which can be a gene or its protein, in
the network. Each gene/protein can be in the active (=1) or inac-
tive (=0) state. In this example, X receives two inputs, A and B.
The output is the state of X that ensues as a result of the activity
state of the inputs and a boolean function for X, as defined in the
“look-up table” (right). The boolean function for X thus deter-
mines the next state of X, depending on the activity configuration
of the inputs it receives. In the example function, B can force X to
be active (whenever B=1, then X=1), while A is necessary but not
sufficient to inactivate X (A=1 leads to X=0 only if B=0). B A
concrete example of this specific boolean function is the posttrans-
lational regulation of the cell cycle regulator, retinoblastoma pro-
tein (pRb). The activity of pRb in controlling cell cycle progres-
sion is blocked when it is phosphorylated by a kinase enzyme, cy-
clin-dependent kinase (cdk). The enzyme cdk is always expressed
but needs to be activated by association with another protein, a cy-
clin. The activity of the cyclin-cdk complex is blocked when a cdk
inhibitor, such as p27, binds to the complex [30]. In the language
of boolean functions, X in the example represents pRb and is in
the active (X=1) state by default, i.e., when both A and B are ab-
sent: (A=0, B=0). X has two inputs, A, representing the cyclin
which can cause inactivation X (pRb) by activating the cdk and B,
the cdk inhibitor p27, which inhibits the action of A. Note that the
kinase (cdk) itself is constitutively present and is not represented
in the boolean function. In the presence of A (cyclin) but not B
(p27), i.e., (A=1, B=0), X (pRb) is phosphorylated (small circles
on X), thus inactive (X=0). If B (p27) is present, then even if A
(cyclin) is present (A=1, B=1), X (pRb) remains active (X=1)

(NOT A) OR B

• State changes in time: 
trajectory in nD space

• Structure of state space 
determines all possible 
dynamics

Attractor dynamics and the consequences
for the cell

Inherent stability of attractors

The fact that many disparate, often nonspecific stimuli
can lead to one same physiological cellular “program”
such as differentiation, growth, and apoptosis, all charac-
terized by distinct gene activity patterns, strongly sug-
gests that in real cells these cellular states correspond to
attrators. A central property of both attractor states, as
well as of real cellular states, is their stability to minimal

perturbations. In simulations such minimal perturbations
of attractor states are transient, externally caused altera-
tions in the activity state of individual units, i.e., flipping
of the value of a gene/protein from 0 to 1 or vice versa.
Most of such minimal perturbations on randomly chosen
genes/proteins lead to new GAPs that are logically for-
bidden, but reside in the same basin of attraction, and
therefore the system flows back to the original attractor
from which it departed. In a few instances, if the basin of
attraction is rather small, or the perturbation affects a
gene with a high number of outputs (representing a “hi-
erarchically important” or “master” gene, see below), the
GAP can move into a “neighboring” attractor upon per-
turbation (large arrows in Fig. 3). In general, the larger
the size of the basin, the more stable is its attractor and
the more likely it is to be reached by the network when it
is put into a randomly chosen (forbidden) GAP. Numeri-
cal simulations by Kauffman [18] have shown that the
genomic network resumes the original attractor state in
80–90% of minimal perturbations.

The stability of attractor states is physiologically im-
portant for it protects the cell from fluctuations in the in-
tracellular concentrations of regulatory molecules and al-
lows the cell to maintain its functional state within the
tissue environment.

Transitions between attractors: a role for signal 
transduction

In contrast to minimal perturbations, for attractors to
consistently undergo a transition to another particular at-
tractor requires major (multiple-gene) perturbations that
typically consist of flipping the activity state of a very
specific set of genes/proteins, or of a master gene. For
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Fig. 3 State space with the three attractors. Scheme of the state
space with the GAPs of a hypothetical, typical network, illustrat-
ing the “attractor landscape” in the notation proposed by [28].
Note that, for clarity, only a small fraction of GAPs is shown. Ev-
ery gray dot represents a unique, transient (i.e., unstable) GAP, as
illustrated in Fig. 2B, in the state space. The GAPs are connected
by arrows that form the trajectories along which the GAPs are dis-
placed as the states of the individual units are updated. The state
space is divided (dotted line) into three basins of attraction with an
attractor (black dots) at the center of each. Note that a GAP has
only one successor state, but many GAPs can converge onto one
GAP. This convergence creates order and stability in networks.
The trajectories end at the attractors, which represent the GAPs
defining the cellular states (see text). For the cell cycle, the attrac-
tor oscillates between a few GAPs, corresponding to the various
gene activation patterns that occur at the different phases of the
cell cycle. For differentiation and apoptosis, the attractor is a sin-
gle GAP. The size of the basins of attractions is correlated with the
stability of the respective attractors. The arrows at the attractor
boundaries and their size illustrate the probabilities of transition
between the attractors upon minimal random perturbations. In this
network the differentiation attractor is the largest, representing the
normal, quiescent cell in the mature tissue. Only very specific
stimuli (major perturbations corresponding to signal transduction
cascades) can cause the GAP to switch into the smaller growth or
apoptosis attractors

 S. Huang. Gene expression profiling, genetic networks, and cellular states: an integrating 
concept for tumorigenesis and drug discovery. J. Mol. Med, 77(6):469–480, 1999.

Stability Plasticity



Random Boolean networks 
have an ordered regime

• Only a small fraction of all 
cell states are stable

• The system does not visit all 
possible states

34 S. Huang and D.E. Ingber / A Non-Genetic Basis for Cancer Progression and Metastasis

Fig. 2. Dynamics of a 2-gene (mutual inhibition) circuit. A. Two-dimensional state space = B-C-plane. Axes represent expression levels of

genes B and C. Each point in this plane is a circuit configuration, or state of the system, [B, C]. The flows are shown: trajectories starting from
a regular grid of initial states (small dots). The few arrows on the trajectories indicate flow direction. S1, S2 denote the two attractor states (grey
dot). * represents the saddle on the [B = C]-diagonal (separatrix) which separates the two basins of attraction in this symmetrical system. B.
Computed attractor landscape represented by contour lines over the B–C state space. The “height” (vertical axis) is proportional to the negative

logarithm of the probability for the circuit to be at a given state [B,C]; thus the lower the elevation, the more probable = the more stable. C.

Purely schematic representation of an “attractor landscape” for a high-dimensional state space, and the underlying hypothetical 10-gene network

and associated expression profile. Again, each point represents a network state (expression profile). The large arrow represents an attractor state

transition. Note that states S∗(t2) and S∗(t3) are attractor states, while S(t1) is a transient, instable state.

trajectory S(t) until it hits the attractor state S1 with
[B >> C] where B is high enough so that its own

inactivation rate (which is proportional to the level of

B) is in balance with its basal synthesis rate.
Since we have a two-dimensional state space, we

can use the third dimension to display something else

than a gene expression level. This allows us to more

formally establish the notion of a landscape by repre-

senting an important quality related to the vector flow

of Fig. 2A: the stability of each state S(t) or configu-
ration [B, C], defined by the expression levels xB(t)
and xC(t). As we have seen above, stability becomes
manifest when we exert small perturbations to the cir-

cuit states. By adding “gene expression noise” (ran-

dom small fluctuation of the levels of B and C as ob-

served in single cell analysis [55]), we can thus apply

systematic perturbations to determine the stability of

each state [B, C] in our grid in the xy plane as the
probabilityP of a state [B, C], i.e, P ([B,C]), to main-
tain its position under noise. We then plot the nega-

tive logarithm of P for each [B, C]-configuration in
the third, z-dimension, -ln(P ([B,C]). Then, the more
“probable” a state, the lower it lies, capturing the notion

of stability [40]. The quantity –ln(P ) forms a kind of
“energy landscape”with valleys representing the stable

attractor states and hilltops and crests representing un-

• Attractors:
• Fixed points: a state in 

which all Boolean rules are 
satisfied 

• Limit cycles: a finite number 
of states through which the 
system cycles

• Attractor basins

Function = mutually 
exclusive attractor states:
! • stable cell types
! • stable phenotypes

! • stable paths



Power of the conceptual 
framework

• All nonlinear dynamical systems have attractor states and 
basins, they can also have multistable but non-chaotic 
dynamics

• Most conclusions from Boolean systems apply regardless 
of system details!

Homeostasis

• Robustness to environmental fluctuations, 
variability

• Large basin size -> stable functional state
• In oscillation, not juggling multiple parallel 

signals during the same cycle



Power of the conceptual framework
Functional 
choices

• Multi-stability: more than one stable attractor
• Flexibility: specific stimuli can trigger 

attractor change

by the existing notion of a specific, unique ‘‘differentiation
pathway’’ as the common target of the two drugs.

Stimulation of HL60 progenitor cells with either DMSO
(1:25% v=v) or atRA (10!7 M) resulted in their differen-
tiation into neutrophils within six days as previously re-
ported [10,11] (see the supplementary material in [13] for
details). Gene expression profiles across "12 600 genes
were measured for the differentiation processes induced by
DMSO and atRA at 0, 2, 4, 8, 12, and 18 h and daily
thereafter until day 7 using oligonucleotide DNA micro-
arrays. The relative expression level with reference to that
at 0 h was used for xi#t$, expressed as the log-transformed
ratio of the measured signals: xi#t$ % log2&signalA;Di #t$=
signali#t % 0$', commonly referred to as ‘‘signal-log ratio’’
(SLR). A set of N % 3841 genes remained after filtering
out genes whose expression signal was too low in this cell
type to be considered significant or that did not exhibit a

significant change in expression during the entire course of
the experiment.

Unlike the use of DNA microarrays to identify specific
genes, we treated genes as anonymous members of a single
ensemble containing N genes and calculated the intertra-
jectory distance b#t$ between SA#t$ and SD#t$ at corre-
sponding time points. This ensemble property of the
population of genes is a robust measure that is not biased
by noise at the level of individual gene measurements. b#t$
was quantified as the ‘‘inverse correlation,’’ b#t$ %
1! r#t$, where r#t$ is the Pearson coefficient of correlation
between the two state vectors SA#t$, SD#t$ at time t.

We first examined the ultimate convergence of the atRA-
and DMSO-induced neutrophils, i.e., whether there is a
negligible disparity at day 7 between SA#7 d$ and SD#7 d$
as expected based on functional comparison. The state
vector disparity for microarray replicates was experimen-
tally determined to be breplicate < 0:01 in three separate
hybridizations. The disparity between different microarray
samples within the same treatment group measured at
different days after the cells had reached the stationary
state (days 6 vs 7 and 11 vs 12; for both processes), and
hence an upper bound estimate of intersample variability,
was also low (bstat % 0:14( 0:02). We found that at day 7
the final disparity was b#7 d$ % 0:42. Because b#7 d$>
bstat, this final disparity cannot be explained by measure-
ment noise alone. The lack of equivalence of the trajecto-
ries at the end of differentiation indicates that DMSO and
atRA-induced neutrophils are not entirely identical, as
previously suggested on biological grounds [14]. Thus,
there are some genes whose expression may not be relevant
to the macroscopic definition of neutrophils and are differ-
entially regulated by DMSO and atRA. For the analysis of
the trajectory we therefore focused on the subset of genes
whose expression in atRA vs DMSO-induced neutrophils
(at day 7) was considered to be not significantly different
(see the supplementary material in [13]). With this filter we
obtained a subset of N % 2773 genes (%72% of the initial
set of N % 3841 genes).

Since it is difficult to display thousands of dimensions
(genes) for both processes simultaneously, we first reduced
the dimensionality by using the gene expression dynamics
inspector (GEDI) program [15] and principal component
analysis. GEDI enables the visualization and comparison of
multiple time series by mapping each expression profile,
i.e., snapshot of S#t$, into a ‘‘mosaic’’ representation
through dimension reduction and reordering of the genes
into miniclusters of typically 1–10 similarly behaving
genes using a self-organizing map. The GEDI mosaics
[Fig. 1(a)] revealed that starting with an identical expres-
sion pattern, the two processes exhibit clearly distinct
genome-wide gene expression patterns by 12–18 h after
treatment with DMSO and atRA, as indicated by different
color patterns. After this initial divergence the GEDI mo-
saics converged to a virtually identical pattern by day 6.
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FIG. 1 (color). Comparison of the two gene expression trajec-
tories for the subset of N % 2773 genes during neutrophil
differentiation. (a) The genes were clustered by a self-organizing
map into 15) 16 ‘‘miniclusters’’ with regard to their temporal
profiles across both differentiation processes using the GEDI
program [15]. Each minicluster is mapped onto the same corre-
sponding ‘‘tile’’ in all the ‘‘mosaics,’’ each of which represents a
snapshot of S#t$. Tile colors indicate the expression level of the
cluster centroid; numbers on color bar: gene expression levels in
SLR units. (b) Principal component analysis. Each point repre-
sents an individual expression profile S#t$ within one of the two
differentiation processes (red circles: atRA; blue squares:
DMSO) projected onto the first two principal components
(PC1 and PC2).
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multiple time series by mapping each expression profile,
i.e., snapshot of S#t$, into a ‘‘mosaic’’ representation
through dimension reduction and reordering of the genes
into miniclusters of typically 1–10 similarly behaving
genes using a self-organizing map. The GEDI mosaics
[Fig. 1(a)] revealed that starting with an identical expres-
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snapshot of S#t$. Tile colors indicate the expression level of the
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SLR units. (b) Principal component analysis. Each point repre-
sents an individual expression profile S#t$ within one of the two
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DMSO) projected onto the first two principal components
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 human 

promyelocytic 

HL60 cells
neutrophils

• Change of function does not require exquisite 
control of signaling -> basin change

• Multiple converging routes to 1 phenotype

end up in the same attractor forms the basin of attraction of

that attractor. Attractor states are robust, ‘‘self-stabilizing,’’

distinct states. Once an attractor is reached, the associated

expression pattern is maintained even after the original

stimulus that placed it in the corresponding basin has

disappeared. Thus, bistability is the most elementary

mechanism for memory in nature. The basins are separated

by regions of unstable states, which constitute the epigenetic

barriers. (See Box 2 for more details.) Small perturbations of

attractor states (imposed temporary changes in x1 or x2) are

‘‘buffered’’ by the basins of attraction, that is, the perturbed

circuit state S’ returns to the attractor state. In contrast, larger

perturbations above a distinct threshold will ‘‘kick’’ a state out

of the basin and into the other attractor. (Fig. 3B illustrates the

idea of attractor transitions).

Cell types as high-dimensional attractors

Given the dynamical properties of attractors, it is now natural

to equate each of the two stable attractor states SA and SB

with an observable, stable gene expression pattern, and

hence, with a cell fate, a lineage or a cell type. That cell types

correspond to attractor states was historically a central idea,

unfortunately forgotten as molecular biology turned its

attention to explaining cell fate regulation in terms of

molecular markers and linear pathways (Fig. 1A). It is

important to note the fundamental ontological difference

between arrows in the typical pathway charts that symbolize a

molecular causation and the arrows in state space that

represent a movement of S (a trajectory or path) driven by

network dynamics (Fig. 1C).

Figure 2. Dynamics of the 2-gene regulatory circuit. Qualitative explanation of basic principles of dynamical systems for the bistable (A–C) and
tristable (D–F) circuits. A, D. Circuit architecture for two mutually inhibitory genes. B, E. State space (x1–x2)-plane with typical vector field (flow
field). Each point in the plane is a gene expression configuration of the circuit (x1, x2). The arrows (vectors) indicate how the states S¼ (x1, x2),
arbitrarily positioned on a grid to cover the state space, move within a tiny time unit. In B, the states SA and SB (red dots) are stable steady states
(attractors); SC (empty circle) is an unstable steady state. In E, the central state SC is also an attractor. Dashed red line represents the separatrix,
dividing the state space into the basins of attraction.C, F. Associated (quasi) potential landscape.(96) (For the computation of the landscape in F a
circuit with different parameters than that underlying the vector field in E. was used to optimize 3D visualisation). Bottom: simplified schematic
representations, obtained from cross section along the dashed line " ------ ". G. Waddington’s ‘‘epigenetic landscape’’ (from ref.(70)) a qualitative
metaphor that predates the formal quasi-potential landscape of gene networks. H. Examples of gene regulatory circuits with the same
architecture which control binary decisions at branch points of cell differentiation in multi-potent cells, including CMP,(74) embryonic stem cells,(75)

and OAP.(97) The dashed arrows indicate that the positive feedback loops are indirect. Note that these circuits are embedded in larger regulatory
networks.
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Power of the conceptual 
framework

Epigenetics

• Dynamical systems have “memory”
• Inheritance of a phenotype does not mean 

exact inheritance of the entire cell state!
• Daughter cells ONLY need to inherit a state 

within the same attractor basin!
• Role of epigenetic DNA modification:

• LESS PRONE TO CELLULAR NOISE?
• guarantee the choice of attractor basin!



The 
microenvironment

• Some cells are only “themselves” within their 
tissue micro-environment

• Translation to dyn. systems: state of a few 
nodes in the network are fixed by this 
environment
1. cannot dynamically change due to internal 

dynamics
• this is akin to rewiring the network!
• new “pseudo-attractors” can arise, only 

seen if the microenvironment is right
2. OR: microenvironment can be seen as 

setting the input to the already existing 
network, allowing it to choose 
appropriately

Power of the conceptual 
framework



Power of the conceptual 
framework

Disease
• Environment

• for the dynamical system this is the same 
as microenvironment
• forcing the system into a “pseuso-

attractor” (i.e. the cell is in a non-
physiological state)

• giving the wrong instruction for 
functional choice (i.e. the cell is in a 
wrong  physiological state)

• Mutation
• reshuffling of the attractor landscape
• new disease-attractors may arise
• stability of not desired functional states 

may increase



Cancer as an example
Huang and Ingber. A non-genetic basis for cancer progression and metastasis: self-
organizing attractors in cell regulatory networks. Breast Disease (2006): 26, 27-54.

• Uncontrolled cell growth
• progressive disruption of tissue architecture
• Metastasis

• ECM breakdown
• epithelial to mesenchymal transition (EMT)

This is a 
physiological 

state!

• Standard models of cancer progression
• Multi-step progression

• random mutations + DNA modifications
• selection pressure
• => rare metastatic population
• selection of all genetic alterations ONE BY 

ONE would be required (~90 in cancer cells)
• not clear where the pressure comes from

Orchestrated 
switch of large 

part of 
genome!

• selection of all genetic alterations ONE BY 
ONE would be required (~90 in cancer cells)

• not clear where the pressure comes from



• Direct challenge
• expression of metastatic tumors MORE 

SIMILAR to primary tumor than to 
metastatic tumor in other patients...

• not a separate genetic phenotype, selected 
for by competition!

• Intrinsic metastasis model:
• primary tumor has (or does not have) the 

genetic signature predictive of metastasis

• Metastatic dissemination:
• tumor cells found in bone marrow BEFORE 

primary tumor apparent
• these cells may start independent tumors on 

their own with mutli-step progression
• these cells sometimes have epithelial 

phenotype at the new site, at least for a 
while

But how?



• Cancer as a trans-differentiation event
• not entirely the business of the transforming 

cell
• cytokines, ECM influence transformations

• TGFb in carcinoma cells -> ETM
• Question:

• why is this transformation so robust
• why do carcinoma cells react to TGFb by 

undergoing EMT, instead of cell cycle 
arrest, as normal epithelial cells?

Fundamental 
chanhe in view 
from mutation

• Reactivation of “embryonic programs”
• how can this happen so readily and still 

allow embryonic development to be a 
robust process?

• Question:
• why is this transformation so robust
• why do carcinoma cells react to TGFb by 
undergoing EMT, instead of cell cycle arrest, 
as normal epithelial cells?



The attractors of cancer

One 
genome, one 
landscape

• The genome of an organism and all possible 
interactions define the dynamical system

• There is ONE large space of states and ONE 
set of attractors
• Difference in cell type: difference in 

WHERE the cell sits in the landscape
• => “embryonic attractors” are present but 

not used in the dynamical system of adult 
cells

Some 
attractors are 
hard to get to

• Far away in state space
• Large “epigenetic” barriers (i.e. quite a few 

things have to change at the same time to 
place the system in another attractor basin)
• 4 transcription factors that make iPS cells
• normal tissue environment never facilitates 

these types of changes



Cancer 
states are attractor 

states
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Fig. 4. Tumor types as discrete entities in transcriptome space. As an example, gene expression profiles (∼ 12,000 genes) of various pulmonary

tumors reported by [104] were analyzed. All genes were used for the hierarchal clustering (on the left) and the self-organizing maps (SOM)

which are displayed as GEDI maps (on the right). Each terminal branch of the dendrogram and small black square represents a patient sample.

Each GEDI map [105] represents a gene expression profile (= one patient sample), but only three samples are shown for each diagnostic group.

For analysis details, see [106]. Each “tile” in the 30-by-31-tile “mosaic” of a GEDI map represents a “minicluster”, each containing on average

approximately 10 genes that behave highly similarly across all samples measured. Similarly behaving miniclusters in turn are placed in vicinity

to each other on the GEDI map, giving rise to coherent, visually recognizable patterns characteristic for each sample. Since the assignment of

genes to miniclusters is universal for the entire set of expression profiles, the GEDI maps of different samples can be directly compared to each

other (each tile represent the same genes in all GEDI maps). Colors indicate relative gene expression (centroid of each minicluster), blue =
lowest, red = highest.

formation and progression? The idea of cancer as an

embryonic attractor is of course oversimplified but it

provides a conceptual framework for integrating the

influence of epigenetic regulation as a developmental

process with genetic mutations as an evolutionary pro-

cess during tumor formation.

In the formalism of gene regulatory networks, muta-

tions cause a permanent rewiring of the network archi-

tecture. For instance, a network connection is deleted

(e.g., due to a pointmutation that abrogates a regulatory

protein-protein or DNA-protein interaction) or a new

interaction is formed (e.g. chromosome translocation

of a coding region of a gene to behind a regulatory re-

gion of another gene). Nodes in the network can also be

dropped (e.g., deletion of a tumor suppressor) or locked

in the “always on” mode (constitutive overexpression

of an oncogene).

Simulations in model networks have shown that non-

chaotic networks which exhibit stable attractors are re-

markably robust to limited rewiring events, such as ad-

dition or deletion of a gene – preserving most of the

state space structure, thus maintaining basic cell func-

tionality [101,111]. Since the attractor landscape di-

rectly reflects the network architecture, limited rewiring

typically translates into a change of the shape of the

attractor landscape rather than the destruction of entire

attractors: basins of attraction expand or shrink, inac-

cessible attractors suddenly become easily accessible

due to flattening of separating hills, or attractors may

fuse to create new ones with novel properties, while

largely preserving existing attractor structures [111].

Such subtle changes of attractor structuremay have sig-

nificant biological consequences. Since attractor states

S∗ are defined by stable gene expression profiles which

in turn control cell behavior, such modifications allow

cells with just a little rewiring to acquire new, self-

stabilizing gene expression programs while preserving

basic cellular functions.

• Discrete subtypes
• Large number of different 

underlying mutation
• no continuum of 

phenotypes!

What do 
mutations do?

• Permanent rewiring of the regulatory network 
• Ordered random networks are ROBUST to 

limited rewiring
• attractor landscape will shift, or change 

LOCALLY => basic cell funcitonality stays 
the same, except in a few places

• basin sizes change
• barrier hights change



• Allow access to embryonic 
attractors from an adult 
expression profile (Huang)
• external stimuly may be 

needed for switch, even after 
mutations => role of 
environment

• NOT de-differentiation, but 
similarity to embryonic states!

• EMT: change into the 
mesenchymal attractor
• multiple stimuli can robustly 

achieve it with cancer cells
• “normal” epithelial cells 

cannot easily cross the 
barrier

Increase of 
embryonic 

basin
44 S. Huang and D.E. Ingber / A Non-Genetic Basis for Cancer Progression and Metastasis

Pre-
mutation

Post-
mutation

proliferation,
embryonic phenotype

differentiation /
quiescent mature phenotype

rg

Fig. 5. Mutation-induced network rewiring results in shift of attractor boundaries. Schematic visualization of the principle that an alteration of

the network interactions due to mutations causes a distortion of the attractor landscape. Despite schematic reduction of dimensionality, each

point on the landscape surface represents one network state, i.e., one gene expression profile. Here, the embryonic attractor (red) which may

encode the proliferative, mesenchymal phenotype is relatively small and inaccessible prior to the mutation (top). But it is enlarged by fusing with

another neighbor attractor and also at the cost of the differentiation attractor (blue) which shrinks as a consequence of the mutations (bottom).

The very same external signal (white vertical arrow), e.g., TGFβ, may cause a normal cell to become quiescent by placing S′(t) (white circle)
within the basin of attraction of the differentiated, quiescent phenotype (blue). But after the mutation, the same position S′(t) in the state space,
established in response to the same signal, is in the basin of attraction of the embryonic phenotype. This may explain how the very same signal

can cause discretely disparate phenotype switches.

Such an alteration of the attractor landscape may also

bring the cell significantly closer in state space to other

embryonic phenotypes, such as invasion, ECM degra-

dation and migration. However, additional mutations

may be needed to modify the physiological embryonic

programs so that they express the full phenotype of an

aggressive tumor. Furthermore, non-genetic environ-

mental stimuli, such as chronic inflammation, may also

cooperate in pushing the cell state S(t) toward the can-
cer attractor. These additional requirements could ex-

plain the observation that although early tumors some-

times exhibit gene expression signatures that herald lat-

er metastasis, they may still require additional alter-

ations and time to become metastatic, as postulated by

the second model (Section 2).

Epigenetic phenotype switching

One of the fundamental properties of an attractor

landscape is multistability, the ability of a system to

switch back and forth between specific, stable pheno-

types in response to a variety of (non-)specific pertur-

bations, including gene expression noise [49]. These

perturbations affect the values xi(t) in S(t) and lead
to a new stable state that can be maintained even after

removal of the stimulus (as discussed in Section 4.4).

Such non-genetic “enduring modifications” have long

been suggested to play a role in tumorigenesis [131,

132]. In cases of reversible state transitions, another

stimulus is then needed to toggle the phenotype back

to the original state.

This non-genetic switching between discrete pheno-

typic states could also be invoked to account for the

third model (see Section 2) that postulates rare, ran-

dom and early dissemination events in primary tumors.

Here a malignant cell is thought to transiently switch

on the mesenchymal phenotype before invasion, and

then shut it off again once it seeds a secondary site, in a

mesenchymal-epithelial transition” (MET) process as

Cancerous 
mutations



The attractor landscape offers 
an integrative framework for 

different ideas
• Multi-step progression with selection

• initial reshuffling of landscape may make proliferation accessible 
but less robust (NOT de-differentiation!)
• early tumor cells are often apoptotic, further mutation and 

selection is likely to play a role

• Intrinsic metastasis model & metastatic dissemination
• original reshuffling of landscape can allow access to proliferation 

AND mesenchymal attractors (both accessible to ES cells)

• De-differentiation
• not quite: a cancer cell is an altered dynamical system, but NOT 

entirely new
• embryonic-type programs are re-activated, very similar to ES cells



9. Modeling the full 
cellular regulatory 

system 2
 - Modularity and Hierarchy -
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