
7. Transcriptional regulation 
from microarray data

Warning: Statistical physics. 
It only works on average.

http://regan.med.harvard.edu/CVBR-course.php



How about the entire genetic 
regulatory network?

• Put together known literature
• TRANSFAC, TRANSPATH
• INGENUITY
• InterAct

• Predict TF binding

?

• Public databases: 10-100 thousands
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Figure 2 | Pathway analysis of representative genes involved in innate
immunity. A prototypical inflammatory cell was constructed from 292
representative genes involved in inflammation and innate immunity. Genes
for which the expression statistically increased from baseline are coloured
red, those for which expression decreased are shown in blue. a, Composite

changes in apparent expression over 24 h, identifying nodes and
interactions. b, Temporal changes in apparent expression. The response to
endotoxin administration in blood leukocytes can be viewed as an integrated
cell-wide response, propagating and resolving over time.
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• Inflamation and immunity genes
• Known interactions (IPA)
• Up- or down-regulation in blood 
leukocytes during endotoxin 
administration

If we know enough interactions:



An overview of approaches

Co-expression 
networks

Boolean 
networks

Bayesian 
networksODEs and 

regression • Known literature
• Transcription factors
• Binding site information
• Perturbation experimental design



How far does correlation take us?
• Hypothesis: co-expression means

• common upstream regulator
• shared function

Common TF binding site 
specific to this clusterletter

282 nature genetics • volume 22 • july 1999

functional class (Table 1). The most notable functional grouping
occurred for genes in cluster 1, where 64 of 164 genes encode
ribosomal proteins (P value of 10!54). Not all clusters showed sig-
nificant enrichment for function. The members of such clusters
may participate in multiple classically defined processes and
therefore may not show significant enrichment in any one func-
tional category. Alternatively, the number of clusters (30) may
overestimate the underlying diversity of biological expression
classes in the data set. We erred on the side of over-classification,
however, to avoid missing significant expression classes. Subse-
quently, independent analyses, such as functional category
enrichment and motif searching, aid in determining the biologi-
cal significance of the clusters a posteriori. Note that the func-
tional categories are only used to represent the enrichment of the
clusters and were not used in any aspect of the analysis, including
the motif discovery phase. The complete analysis is available
(http://arep.med.harvard.edu/network_discovery).

The temporal profile of each cluster is represented by a plot of the
mean, variance-normalized expression level of all the genes within
the cluster (Figs 1a, 2a). Dispersion bars represent the standard
deviation of the points along a particular dimension (in this case,
time point). We used an index of cell-cycle periodicity to quantitate
the extent of periodicity at the cell-cycle period of 80 minutes
(Table 1). Of the top periodic clusters, three are profiled (Fig. 1a).
Many of the genes in these clusters encode proteins which function
in cell-cycle phase-specific processes such as replication (cluster 2),

organization of centrosome (cluster 14), and budding and cell
polarity (cluster 7). Note that the timing of maximum expression
for the genes in these clusters agrees with the phase during which
their product is required (G1-S for replication, S-G2 for organiza-
tion of centrosome and M phase for budding and cell polarity).
Most clusters have non-periodic temporal profiles (Fig. 2a),

with some showing complex behaviour. Members of cluster 1
show a relatively steady expression level, except for the peak during
M-G1, but as can be seen from the relatively small dispersion bars,
the members of this cluster are tightly co-regulated"a fact recapit-
ulated in its 10-fold enrichment for ribosomal proteins.

We next conducted a blind and systematic search for upstream
DNA sequence motifs that were common to members of each
cluster. We did this to identify known or novel cis-regulatory ele-
ments that may contribute to the co-regulation of genes in a clus-
ter. We used the program AlignACE (ref. 16), which finds globally
optimal alignments within unaligned input sequences. We found
that 18 motifs from 12 different clusters passed our criteria for
biological significance; their average MAP score was 35 (range
12–82). Of these motifs, seven had been identified experimentally
and are known to regulate the expression of many genes in their
respective clusters. Multiple factors may account for why we did
not find significant motifs in all clusters. First, our criteria for call-
ing a motif ‘significant’ may be too stringent. Second, the co-regu-
lation of the members of some clusters may be achieved through
post-transcriptional mechanisms (such as those controlling

Fig. 1 Top periodic clusters, their motifs and overall distribution in all clusters. a, Mean temporal profile of a cluster, named according to the biological functions
for which it is most highly enriched (with the numerical designation of the cluster in parentheses). Error bars represent the standard deviation of the members o f
each cluster about the mean of the particular time point . b, Sequence logo representation of the motif(s) discovered within the cluster. The height of each let ter
is proportional to its frequency. The let ters are sorted with the most frequent one on top . The overall height of the stack signifies in formation content of the
sequence at that posit ion (0!2 bits). Motifs M14a and M14b were identified in this study. c, The occurrence of the motif across all 30 clusters.

a b c
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• Data preparation & 
normalization
• A distance metric: what 
does “similar” mean?

• Pearson correlation
• Euklidean distance
• Mutual Information
• ... 

• Clustering method
• Hierarchical
• ... several types

• Non-hierarchical
• K-means
• SOM
• PCA

• Fuzzy clustering
• ...

Sounds nice! How does clustering go?
All capture functionally related gene groups

Different results on the same dataset

Rat, Krox-24 BE

No consensus on which one 
is better (no metric for 

“better”)



Coherent groups of genes & 
experiments

Ideally, all combinations of genes & 
experiments should be tested

• Iterative Signature Algorithm

linkage to compute the complete hierarchical cluster tree.

Using this cluster tree we partitioned the expression matrix

using different cutoffs such that the resultant partitions con-

tained at least 15 and at most 40 clusters. From all these

partitions we selected the one whose clusters had the highest

average overlap with the gene content of the modules. This

overlap is shown in Fig. 6 !squares". Finally, for the ISA we
reconstructed the modules from the fixed points that oc-

curred repeatedly. Namely, in order to avoid artifacts due to

distinct, but very similar, fixed points, we ‘‘fused’’ these so-

lutions using a procedure that resembles agglomerative clus-

tering, albeit for modules rather than genes !see Ref. #25$ for
details". The fraction of correctly identified genes per module
!circles" as well as the fraction of correctly identified mod-
ules !asterisks" is shown in Fig. 6. We conclude that for noisy
data the identification capability of the ISA is superior to that

of SVD and clustering. In particular, SVD is very sensitive to

the addition of noise and fails to identify the modules accu-

rately, even for a small level of noise. Clustering can handle

a moderate amount of noise, but not as much as the ISA.

A second numerical experiment was designed to study
quantitatively the ability to identify overlapping modules.

We specify the regulatory complexity by the the number of

transcription factors per gene nTF . Only if each gene !and
condition" is associated with exactly one transcription factor
(nTF!1) the expression matrix can be written in block-
diagonal form. For larger values of nTF distinct modules

share common genes and conditions and the expression ma-

trix cannot be reorganized into in block-diagonal shape. We

applied the SVD, hierarchical clustering, and the ISA to the

expression matrices generated for nTF!1, . . . ,6 and evalu-
ated the outputs in the same manner as described above !see
Ref. #25$ for related results". The results are shown in Fig. 7.
One can see that the ISA could successfully identify all the

transcription modules even in the case of highly overlapping

modules. In contrast, for nTF"1 the identification capabili-
ties of SVD and clustering rapidly decrease. This is because

the clustering algorithm does not allow for multiple assign-

ments of one gene to different modules and therefore usually

captures only small, incomplete fractions of the overlapping

FIG. 5. Identification of overlapping modules. An in silico expression matrix describing 500 genes under 100 experimental conditions

was generated according to the model introduced in the text. The data correspond to two overlapping transcription modules M 1 and M 2, each

containing 250 genes and 50 conditions. !a" The expression matrix is shown for comparison on the left of each row. !b", !c" Using this matrix
we applied the ISA to 1000 input sets composed of randomly chosen genes. Iterations were performed using different choices of the

threshold tG . !b" The boxes in each row represent ten of the resulting converged gene sets that were obtained for tG as indicated on the left.
Each box i!1, . . . ,10 is composed of 500 lines that specify the genes that appear in the corresponding fixed point. Genes that belong to the
converged set are represented by a dark gray line, while the remaining genes are shown in light gray. For tG!#2 the output sets contain all
the genes, tG!#1 yields output sets containing the genes that are associated with either of the two modules, for tG!0 there are two types
of output sets, comprising either the genes of M 1 or of M 2, for tG!1 all the output sets contain only those genes that belong to both modules
and for tG!2 the output sets are essentially empty. !c" The number of sets that converged !within 95% accuracy" to M 1!M 1 !solid line",
M 1 !dotted line", M 2 !dashed line", or M 1"M 1 !dash-dotted line" are plotted as functions of tG . Scanning over different thresholds reveals
the modular structure of the expression data (M 1!M 1→M 1 ,M 2→M 1"M 1).

BERGMANN, IHMELS, AND BARKAI PHYSICAL REVIEW E 67, 031902 !2003"

031902-12
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module is activated more mildly or is repressed. The method suggests
that these changes are regulated by other regulators, such as the pro-
tein phosphatase type 1 regulatory subunit Gac1 and the transcrip-
tion factor Msn4. Indeed, the stress response element (STRE),
recognized by Msn4, appears in the upstream region of 32 of 55 genes
in the module (P < 10–3), as well as in those of many of the genes con-
taining the Hap4 motif (17 of 29 genes; P < 7 ! 10–10), supporting our
placement of both regulators in one control program.

The nitrogen catabolite repression module (Supplementary Fig. 1
online) shows the ability of our method to capture an entire cellular
response whose genes participate in diverse metabolic pathways and
cellular roles (12 of 29 in allantoin and urea metabolism, 5 of 29 in
amino-acid metabolism and 6 of 29 in sulfur or methionine metabo-
lism), all of which relate to the process by which the yeast uses the best
available nitrogen source. Gat1 is suggested as the key (activating) reg-
ulator of this module, further supported by the presence of the GATA
motif, the known binding sequence for Gat1, in the upstream region
of 26 of 29 genes (P < 10–17). This module also shows that the method
can identify context-specific regulation, as the similarity in expression
of genes in the module is mostly pronounced in stationary phase (17 of
22 experiments; P < 10–4), amino-acid starvation (5 of 5; P < 9 ! 10–5)
and nitrogen depletion (10 of 10; P < 8 ! 10–9), all of which are condi-
tions in which using alternative nitrogen sources is crucial. Two addi-
tional known regulators involved in this response, Uga3 and Dal80, are
suggested as members, rather than regulators, of the module.

The galactose metabolism module (Supplementary Fig. 2 online)
illustrates our method’s ability to identify small expression signatures,
as the module consisted of only four Gal4-regulated genes and pre-
dicted Gal4 as a regulator, with a predicted regulatory role that
includes activation in galactose-containing medium.

The energy, osmolarity and cAMP signaling module
(Supplementary Fig. 3 online) shows that our method can identify
regulation by proteins other than transcription factors, as the top pre-
dicted regulator was Tpk1, a catalytic subunit of the cAMP dependent
protein kinase (PKA). This prediction is supported by a recent study20

showing that the expression of several genes in the module (for exam-
ple, Tps1) is strongly affected by Tpk1 activity in osmotic stress,
which was among the conditions predicted by the method to be regu-
lated by Tpk1. Further support is given by the presence of the STRE
motif, known to be bound by transcription factors that are regulated
by Tpk1 (ref. 20), in the upstream region of most genes in the module
(50 of 64; P < 3 ! 10–11), often in combination with other motifs
bound by Tpk1-modulated transcription factors, such as Adr1 (37 of
64; P < 6 ! 10–3) and Cat8 (26 of 64; P < 2 ! 10–3). Our method sug-
gests that Tpk1 is an activator of the module, however, in contrast to
its known role as a repressor21. We discuss this discrepancy below.

Evaluation of module content and regulation programs
We evaluated all 50 modules to test whether the proteins encoded by
genes in the same module had related functions. We scored the func-
tional/biological coherence of each module (Table 1) according to the
percentage of its genes covered by annotations significantly enriched
in the module (P < 0.01). Most modules (31 of 50) had a coherence
level above 50% and only 4 of 50 had gene coherence below 30%. The
actual coherence levels may be considerably higher, as many genes are
not annotated in current databases. Indeed, an in-depth inspection
identified many cases in which genes known to be associated with the
main process of the module were simply not annotated as such.

We obtained a global view of the modules and their function by
compiling all gene annotations and motifs significantly enriched in

Figure 3 The respiration and carbon regulation
module (55 genes). (a) Regulation tree/program.
Each node in the tree represents a regulator (for
example, Hap4) and a query of its qualitative value
(for example, red upward arrow next to Hap4 for
“is Hap4 upregulated?”). The expression of the
regulators themselves is shown below their
respective node. (b) Gene expression profiles.
Genes, rows; arrays, columns. Arrays are arranged
according to the regulation tree. For example,
the rightmost leaf includes the arrays in which
both Hap4 and HMLAlpha2 are upregulated.
Contexts that consist primarily of one or two
types of experimental conditions are labeled.
(c) Significant annotations. Colored entries
indicate genes with the respective annotation. The
most significantly enriched annotations for this
module were selected for display (the number of
annotated genes and the calculated P value for
the enrichment of each annotation are shown in
parentheses). Note the enrichment of three
annotations representing a biochemical process,
cellular compartment and physiological process,
respectively, all relating to cellular respiration.
(d) Promoter analysis. Lines represent 500 bp of
genomic sequence located upstream to the start
codon of each of the genes; colored boxes
represent the presence of cis-regulatory motifs
located in these regions. Note the enrichment of
both the HAP4 motif (purple) and the stress
response element (STRE; green), recognized by
Hap4 and Msn4, respectively, supporting their
inclusion in the module’s regulation program.
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Does correlated behavior translate to 
direct regulation?

• Mutual Information
• non-linear measure of correlated behavior

• ARACNE
• Mutual Information
• Data processing inequality

Figures

Figure 1.

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

F
ra

c
ti
o
n
a
l 
E

s
ti
m

a
ti
o
n
 E

rr
o
r

Kernel Width

Absolute MI

MI rank

Figure 2.
(a) (b)

1



Figure 3.
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Figure 4.
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Test of ARACNE

Erdos-Renyi Barabasi-Albert

k = 2
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How 
about real 
microarray 

data?



CLR - Context Likelihood of 
Relatedness

(Figure 4), and the enriched biological functions reflect the
conditions sampled in the microarray compendium. CLR also
scores 426 of the 1,079 interactions at a higher confidence of
80%. All 426 interactions identified at 80% precision (CLR
threshold z-score ¼ 6.92) are illustrated in Figure S1. All
identified interactions are available on the M3D Web site
(http://m3d.bu.edu) as a graphical map and as tab-delimited
text files.

Although we identified hundreds of known regulatory
interactions correctly at high precision, this represents only a
fraction of known interactions in E. coli. The recall of the
algorithm depends on several factors, including the number
and diversity of expression profiles. As discussed in Protocol
S1, the CLR algorithm can achieve maximum recall and
precision using as few as 60 expression profiles selected for

maximum diversity (Figure 2C). Large environmental pertur-
bations are the most common conditions amongst these 60
profiles, suggesting environmental perturbations are gener-
ally more informative than genetic perturbations for network
inference, in agreement with earlier studies (see Protocol S1
for details) [2]. The remainder of the profiles in the
compendium contribute mainly redundant information
about gene expression responses and regulatory interactions.
Thus, the recall achieved by the CLR algorithm appears to be
limited largely by the low phenotypic diversity of the dataset.
This conclusion is supported by a more detailed analysis of
the recovered interactions. For transcription factors with at
least two predicted targets, the mean recall per transcription
factor is 47% (Figure S2), supporting the idea that when a
transcription factor and its targets are adequately perturbed

Figure 2. The CLR Algorithm: Methods and Comparison to Other Approaches

(A) A schema of the CLR algorithm. The z-score of each regulatory interaction depends on the distribution of MI scores for all possible regulators of the
target gene (zi) and on the distribution of MI scores for all possible targets of the regulator gene (zj).
(B) Precision and recall for several different network inference methods applied to all genes in the E. colimicroarray compendium were calculated using
RegulonDB. The number of correctly inferred interactions (within RegulonDB) for each recall value is labeled on the top of the chart. All algorithms
performed far better than the random method. Both CLR and relevance networks reach high precisions, but CLR attains almost twice the recall of
relevance networks at some levels of precision.
(C) Using 60 well-chosen arrays, we can infer a network, nearly equivalent in recall and precision to the network inferred using all 445 microarrays in the
compendium (dotted horizontal line), reflecting the redundancy of the compendium and the potential for improvement in choosing subsequent
perturbations to profile.
doi:10.1371/journal.pbio.0050008.g002

PLoS Biology | www.plosbiology.org January 2007 | Volume 5 | Issue 1 | e80057

Mapping E. coli Transcription Regulation

What is 
wrong with 
this picture?

TF -> G 
only
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Co-expression is stongest between co-
regulated genes!



TF

G1 G2 G3

TF

G1
G2 G3

Fails for combinatorial 
regulation

cofactor

ARACNe  IFF            
1 input/ gene!

Reasons behind the trouble

Is direct regulatory 
information contained in 

MA data?



Boolean network approaches

Basic structure of boolean networks

In the boolean idealization a genetic network consists of
a number (n) of “genes” (used here in a wider sense to
include also the encoded protein) which can either be ac-
tive (“on”: the gene is expressed and its product is in an
active conformation) or inactive (“off”; Fig. 1). The
genes/proteins interact with each other in a way precise-
ly determined by the highly specific molecular interac-
tions. These in turn define the interconnections between
all the genes/proteins of the genome, which together
form a “wiring diagram” for a particular genome (Fig.
2A).

The smallest functional unit of the network is the
gene (with its encoded protein) which can be regarded as
an information processing unit [27] (Fig. 1). A gene X
(or protein X) which regulates other genes/proteins,

transforms its inputs, the regulatory factors that bind to
X as defined by the wiring diagram, into an output,
which is the activity state of X itself in acting on its
“downstream” substrates. For every gene/protein a logi-
cal (boolean) function determines how the activity pat-
tern of the set of input genes/proteins (A, B in Fig. 1) is
to be translated into the output. Figure 1 shows one ex-
ample of such a logical function. Thus, a change in the
activity status of any unit, for example, the flipping of an
“on” state (=1) to an “off” state (=0) for a given gene,
has “downstream” effects – as determined by the struc-
ture and logics of its connections. Boolean functions can
be much more complex and involved than the simple
two-input example of Fig. 1, such that essential details of
regulation, such as differential affinity of competing li-
gands, hierarchical order of binding during assembly of
multimeric complexes, and multiple thresholds for vari-
ous catalytic activities can be absorbed in the boolean
formalism. However, even a network with simple bool-
ean functions gives rise to a global behavior that recapit-
ulates the dynamic features of the regulation of cellular
states.

In the language of genetic networks one can define a
state of a cell at a given time point by the activity status
of each of the individual genes in the genome, which
collectively form a genome-wide gene activity pattern,
or profile (GAP). Such a profile of the activity states, or
GAP, of all the individual genes of a genome with n
genes can be depicted as a string of length n, such as
(1100111...110), which defines for a given cell a network
state at a given moment (Fig. 2B). Graphically, each
GAP represents one point (dots in Fig. 3) in the n-dimen-
sional state space formed by the set of all possible
GAPs. Similar GAPs (i.e., those that differ in the activity
value at only one or a few genes) lie close together in the
state space. In a genome with n=100,000 genes (the esti-
mated size of the human genome), if each gene can only
be either active or inactive, the state space contains
2n=2100,000=1030,000 GAPs, or different strings of length n
consisting of a combination of 1s and 0s. Thus the num-
ber of combinatorically possible GAPs that a genome
can generate is astronomical!

However, computer simulations [18] show that for a
certain class of random genetic networks whose wiring

472

Fig. 1A,B The basic element of a boolean network: genes as in-
formation processing unit. A An example of a basic information
processing unit, X, of a genetic network, and its regulation. Every
square box represents a unit, which can be a gene or its protein, in
the network. Each gene/protein can be in the active (=1) or inac-
tive (=0) state. In this example, X receives two inputs, A and B.
The output is the state of X that ensues as a result of the activity
state of the inputs and a boolean function for X, as defined in the
“look-up table” (right). The boolean function for X thus deter-
mines the next state of X, depending on the activity configuration
of the inputs it receives. In the example function, B can force X to
be active (whenever B=1, then X=1), while A is necessary but not
sufficient to inactivate X (A=1 leads to X=0 only if B=0). B A
concrete example of this specific boolean function is the posttrans-
lational regulation of the cell cycle regulator, retinoblastoma pro-
tein (pRb). The activity of pRb in controlling cell cycle progres-
sion is blocked when it is phosphorylated by a kinase enzyme, cy-
clin-dependent kinase (cdk). The enzyme cdk is always expressed
but needs to be activated by association with another protein, a cy-
clin. The activity of the cyclin-cdk complex is blocked when a cdk
inhibitor, such as p27, binds to the complex [30]. In the language
of boolean functions, X in the example represents pRb and is in
the active (X=1) state by default, i.e., when both A and B are ab-
sent: (A=0, B=0). X has two inputs, A, representing the cyclin
which can cause inactivation X (pRb) by activating the cdk and B,
the cdk inhibitor p27, which inhibits the action of A. Note that the
kinase (cdk) itself is constitutively present and is not represented
in the boolean function. In the presence of A (cyclin) but not B
(p27), i.e., (A=1, B=0), X (pRb) is phosphorylated (small circles
on X), thus inactive (X=0). If B (p27) is present, then even if A
(cyclin) is present (A=1, B=1), X (pRb) remains active (X=1)

• State of the system, or gene activity 
profile:    (0,1,1,0,0,1,1,1,0,...,0)

• State changes in time: trajectory in 
nD space

• Structure of state space determines 
all possible dynamics

• Only a small fraction of all cell 
states are stable

• The system does not visit all 
possible states

• Attractors:
• Fixed points: a state in which 

all Boolean rules are satisfied 
• Limit cycles: a finite number 

of states through which the 
system cycles

• Attractor basins

Ordered systems

34 S. Huang and D.E. Ingber / A Non-Genetic Basis for Cancer Progression and Metastasis

Fig. 2. Dynamics of a 2-gene (mutual inhibition) circuit. A. Two-dimensional state space = B-C-plane. Axes represent expression levels of

genes B and C. Each point in this plane is a circuit configuration, or state of the system, [B, C]. The flows are shown: trajectories starting from
a regular grid of initial states (small dots). The few arrows on the trajectories indicate flow direction. S1, S2 denote the two attractor states (grey
dot). * represents the saddle on the [B = C]-diagonal (separatrix) which separates the two basins of attraction in this symmetrical system. B.
Computed attractor landscape represented by contour lines over the B–C state space. The “height” (vertical axis) is proportional to the negative

logarithm of the probability for the circuit to be at a given state [B,C]; thus the lower the elevation, the more probable = the more stable. C.

Purely schematic representation of an “attractor landscape” for a high-dimensional state space, and the underlying hypothetical 10-gene network

and associated expression profile. Again, each point represents a network state (expression profile). The large arrow represents an attractor state

transition. Note that states S∗(t2) and S∗(t3) are attractor states, while S(t1) is a transient, instable state.

trajectory S(t) until it hits the attractor state S1 with
[B >> C] where B is high enough so that its own

inactivation rate (which is proportional to the level of

B) is in balance with its basal synthesis rate.
Since we have a two-dimensional state space, we

can use the third dimension to display something else

than a gene expression level. This allows us to more

formally establish the notion of a landscape by repre-

senting an important quality related to the vector flow

of Fig. 2A: the stability of each state S(t) or configu-
ration [B, C], defined by the expression levels xB(t)
and xC(t). As we have seen above, stability becomes
manifest when we exert small perturbations to the cir-

cuit states. By adding “gene expression noise” (ran-

dom small fluctuation of the levels of B and C as ob-

served in single cell analysis [55]), we can thus apply

systematic perturbations to determine the stability of

each state [B, C] in our grid in the xy plane as the
probabilityP of a state [B, C], i.e, P ([B,C]), to main-
tain its position under noise. We then plot the nega-

tive logarithm of P for each [B, C]-configuration in
the third, z-dimension, -ln(P ([B,C]). Then, the more
“probable” a state, the lower it lies, capturing the notion

of stability [40]. The quantity –ln(P ) forms a kind of
“energy landscape”with valleys representing the stable

attractor states and hilltops and crests representing un-

All genes <- all 
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ever, in larger networks it may be impractical to
perform a full set of N perturbation experi-
ments, and thus our problem would remain
underdetermined. Even with a full set of per-
turbation experiments, RNA expression data
are prone to high levels of measurement noise,
making the direct solution unreliable. To over-
come this problem, we assume that most bio-
chemical networks are not fully connected (17,
18, 19), that is, some of the coefficients of A are
zero. Thus, by assuming a maximum of k non-
zero regulatory inputs to each gene (where k !
N), we can transform our underdetermined
problem into an overdetermined problem, mak-
ing it robust both to measurement noise and
incomplete data sets.

We next apply multiple linear regression
(20) to calculate the model coefficients for
each possible combination of k regulatory
inputs (k coefficients) per gene. The k coef-
ficients for each gene that fit the expression
data with the smallest error are chosen as the
best approximation of A. Using the standard
errors on the RNA measurement data, the
algorithm also computes the statistical signif-
icance of each recovered coefficient of A and
the overall fit of A. A complete description of
the algorithm is provided in the supporting
online text.

We applied the NIR method to a nine-
transcript subnetwork of the SOS pathway in
E. coli (the “test network”). The SOS path-
way, which regulates cell survival and repair
after DNA damage, involves the lexA and
recA genes, more than 30 genes directly reg-
ulated by lexA and recA, and tens or possibly
hundreds of indirectly regulated genes (21–
25). We chose the nine transcripts in our test
network (Fig. 1) to include the principal me-
diators of the SOS response (lexA and recA),
four other regulatory genes with known in-
volvement in the SOS response (ssb, recF,
dinI, and umuDC ), and three sigma factor
genes (rpoD, rpoH, and rpoS) whose regula-
tory role in the SOS response is not fully un-
derstood. Because much of the regulatory struc-
ture of our test network has been previously
mapped, it serves as an excellent subject for the
validation of our method. In addition, it serves
as an entry point for further study of the SOS
pathway, which regulates genes associated
with important protective pathways relevant
to antibiotic resistance (23, 26 ).

We applied a set of nine transcriptional
perturbations to the test network in E. coli
cells (27 ). In each perturbation, we overex-
pressed a different one of the nine genes in
the test network with an arabinose-controlled
episomal expression plasmid (fig. S1). We
grew the cells in batch cultures under con-
stant physiological conditions to their steady
state ("5.5 hours after the addition of arabi-
nose). Cells were maintained in the exponen-
tial growth phase throughout all experiments.
For all nine transcripts, we used quantitative

real-time polymerase chain reaction (qPCR)
to measure the change in expression relative
to that in unperturbed cells. For each tran-
script, two qPCR reactions from each of eight
replicate cultures were obtained, and qPCR
data were filtered to eliminate aberrant or
inefficient reactions (27 ). The mean expres-
sion changes for each transcript in each
experiment (x in Eq. 1) were calculated (27 ),
and only those changes that were greater than
their standard error were accepted as significant
and used for further analysis (that is, xi # 0
if $xi$ ! Sxi

, where xi is the mean expression
change and Sxi

is the standard error for tran-
script i).

Using the nine-perturbation expression data
set (the training set, tables S6 to S8) and the NIR
algorithm described above, we solved Eq. 1 for
A, the model of the regulatory interactions in the
test network (table S1). The number of input
connections per gene (k) was chosen such that
the solved model provided a statistically signif-
icant fit (as determined by an F test), was dy-
namically stable, and provided the best balance
between coverage and false-positives (27). To
evaluate the performance of the algorithm, we
determined the number of connections in the test
network that were correctly resolved in the mod-
el, A. A resolved connection was considered
correct if there exists a known RNA, protein, or
metabolite pathway between the two transcripts
and if the sign of the net effect of regulatory
interaction (that is, activating or inhibiting) is
correct, as determined by the currently known
network in Fig. 1.

The algorithm correctly identified the
key regulatory connections in the network.
For example, the model correctly shows

that recA positively regulates lexA and its
own transcription, whereas lexA negatively
regulates recA and its own transcription. In
addition, the model correctly identified
recA and lexA as having the greatest regu-
latory influence on the other genes in the
test network (table S5). Overall, the perfor-
mance (coverage and false-positives) of the
NIR algorithm was equivalent to that
expected on the basis of simulations of 50
random nine-gene networks (Fig. 2). More-
over, for the subnetwork of six genes typ-
ically considered part of the SOS network
(recA, lexA, ssb, recF, dinI, and umuDC),
the performance of the algorithm improved
substantially. This suggests that some of
the false-positives identified for the three
sigma factors in our model (rpoD, rpoH,
and rpoS) may be true connections mediat-
ed by genes not included in our test net-
work. Furthermore, our simulation results
suggest that even small reductions in the
measurement noise observed in our exper-
iments [mean noise level # mean(Sxi

)/
mean(xi) # 68%] could lead to substantial im-
provements in coverage and errors in the net-
work model (Fig. 2). Reductions in experimen-
tal noise could be achieved with improved
RNA measurement technologies such as com-
petitive PCR coupled with matrix-assisted
laser desorption/ionization–time-of-flight
(MALDI-TOF) mass spectrometry (28).

We also tested the performance of the
NIR algorithm with an incomplete training
set consisting of perturbations to only seven
of the nine genes. We solved for network
models using all 36 combinations of seven
perturbations and found that the algorithm

Fig. 1. Diagram of inter-
actions in the SOS net-
work. DNA lesions
caused by mitomycin C
(MMC) (blue hexagon)
are converted to single-
stranded DNA during
chromosomal replica-
tion. Upon binding to
ssDNA, the RecA protein
is activated (RecA*) and
serves as a coprotease
for the LexA protein. The
LexA protein is cleaved,
thereby diminishing the
repression of genes that
mediate multiple pro-
tective responses. Boxes
denote genes, ellipses
denote proteins, hexa-
gons indicate metabo-
lites, arrows denote pos-
itive regulation, filled
circles denote negative
regulation. Red empha-
sis denotes the primary
pathway by which the
network is activated af-
ter DNA damage.
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also performed comparably to simulations,
albeit with slightly reduced performance in
comparison with the full nine-perturbation
training set (Fig. 2).

Much of the value of the network model
lies in its predictive power, that is, its ability
to predict expression changes and network
behaviors that fall outside the training data
set used to solve the model. Here, we dem-
onstrate its predictive power by using it to
distinguish the transcripts that are directly
targeted by a pharmacological compound (the
compound’s mode of action) from transcripts
that exhibit secondary responses to the ex-
pression changes of the direct targets. Thus,
the direct targets represent the minimal subset
of transcripts in the model that will produce
the observed expression pattern if externally
perturbed. Because proteins and metabolites
are not measured in this study, the compound
may not physically interact with transcripts

identified as direct targets but instead may
interact with protein or metabolite intermedi-
ates that are not explicitly represented in the
network model.

To identify direct transcriptional targets of
a compound, we first measure RNA expres-
sion changes (xp) resulting from treatment
with the compound. The activity of the com-
pound is treated as a set of unknown tran-
scriptional perturbations (up) that produce the
measured expression changes. From Eq. 1,
we calculate the unknown perturbations as
up ! "Axp (27). The direct transcriptional
targets of a compound are those that exhibit
statistically significant values in up. Calcula-
tion of the statistical significance of up is
described in the supporting online text.

We first applied our scheme to RNA expres-
sion changes that result from the simultaneous
controlled perturbation of the lexA and recA
genes. This perturbation might represent the
effects of a hypothetical compound and serves
as a well-defined input for validating the pre-
dictive power of our model. Although five of
the nine test-network genes responded with sta-
tistically significant transcriptional changes
(Fig. 3A), application of our network model
correctly identified only lexA and recA as the
perturbed genes (2/2 ! 100% coverage, 7/7 !
100% specificity) (Fig. 3B).

We next applied a mitomycin C (MMC)
perturbation to determine whether our
scheme could identify the transcriptional
targets of MMC bioactivity in the SOS
network. Perturbed cells were grown in
0.75 #g/ml MMC, and transcriptional
changes were measured relative to those in
control cells grown in the normal baseline
condition (0.5 #g/ml MMC). All genes in
the test network showed statistically signif-
icant transcriptional increases (Fig. 3C).
When we applied the network model to the
expression data, we correctly identified
recA as the transcriptional target of MMC

bioactivity, with only one false-positive,
umuDC (1/1 ! 100% coverage, 7/8 ! 88%
specificity) (Fig. 3D). Moreover, recA was
identified at a higher significance level
(P ! 0.09) than was umuDC (P ! 0.22),
suggesting that it is the more likely, if not
the only, true target. It is also possible,
however, that umuDC interacts with gene,
protein, or metabolite targets of the com-
pound that are not represented in our mod-
el. Therefore, umuDC may have been cor-
rectly identified as a target in our model.
We also found that a model recovered with
a seven-perturbation training set that ex-
cludes the lexA and recA training perturba-
tions performs nearly as well as the model
recovered with a full training set (see sup-
porting online text and fig. S3).

The NIR method, a form of system iden-
tification based on multiple linear regres-
sion analysis of steady-state transcription
profiles, provides a framework for rapidly
elucidating the structure and function of
genetic networks with no prior information.
The method is robust to high levels of
measurement noise, scalable for larger bio-
chemical networks (27 ), and equally appli-
cable to transcript, protein, and metabolite
activity data. With advances in high-
throughput measurement methods, it may
soon be feasible to include protein and
metabolite measurements on a large scale.
The model recovered with this method en-
ables the identification of key properties of
the network, such as the major regulatory
genes, and it provides a mechanism for
efficiently identifying the mode of action of
uncharacterized pharmacological com-
pounds. These capabilities may facilitate
optimization of cellular processes for bio-
technology applications and the develop-
ment of novel classes of therapeutic drugs
that account for and utilize the complex
regulatory properties of genetic networks.

Fig. 3. Cells were per-
turbed either with a
lexA-recA double pertur-
bation or with MMC.
The mean relative ex-
pression changes (x),
normalized by their
standard deviations (Sx),
are illustrated for the
lexA-recA double pertur-
bation (A) and the MMC
perturbation (C). Arrows
indicate the genes
known to be targeted by
the perturbation. Pre-
dicted perturbations in
the lexA-recA experi-
ment (B) and the MMC
experiment (D) were calculated from the expression data in (A) and (C) using the SOSmodel solved with the
nine-perturbation training set (27). The predicted perturbations to each gene (u) were normalized by their
standard deviations (Su) to determine statistical significance. In all panels, black bars indicate statistically
significant and gray bars indicate statistically nonsignificant. Horizontal lines denote significance levels:P!
0.3 (dashed), P ! 0.1 (solid).

Fig. 2. NIR algorithm performance. (A) Coverage
(correctly identified connections/total true con-
nections) and (B) false-positives (incorrectly iden-
tified connections/total identified connections)
were calculated for SOS models solved with a
nine-perturbation training set (main panels) and a
seven-perturbation training set (insets). Error bars
are not included in the insets for clarity. Experi-
ment (open triangles): Coverage and false-
positives were calculated by comparing the
solved model (table S1) to connections described
in the literature (table S4 and Fig. 1). Because a
nonsignificant fit was obtained for recF, the
weights for inputs to recF were set to zero in the
model. The mean noise observed on the mRNA
measurements in our experiments was 68%
(noise! Sx/#x, where Sx is the standard deviation
of the mean of x, #x). Simulations (filled
squares): Simulated perturbations were ap-
plied to 50 randomly connected networks of
nine genes with an average of five regulatory
inputs per gene. For each perturbation to
each random network, the mRNA expression
changes at steady state were calculated. The
noise on the perturbations was set to 20%,
equivalent to that observed on perturbations
in our experiments. The noise on the mRNA
concentrations was varied from 10 to 70%.
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