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Multi-stable circuits
PU-1GATA1

toggle switch

• The simplest 
“developmental” type circuit

• Bistable

• Modeling
➡ differential equations
➡ Gillespie stochastic dynamics
➡ Thermodynamic models of binding 

and transcription
➡ concentration dependence
➡ precise dynamics of switching

• Boolean dynamics
➡ logic gates
➡ discrete time
➡ captures broad-scale features

learning factor: 0.5, 1.0; neighborhood block size: 2, 2; conscience factor: 3.0,
3.0; these settings led to convergence.

State space non-linear dimension reduction with Isomap was performed
according to Tenenbaum et al. (2000) (http://isomap.stanford.edu). For
calculating the geodesic intertrajectory distances on the manifold the source
code of isomap (written in Matlab) was modified to extract the geodesic
distances between the sample profiles.

Analysis of cell growth, differentiation, apoptosis and death after
induction of differentiation FDCP-mix cells

The cells were routinely cultured in Fischer's mediumwith 20% horse serum
and 2% IL-3-conditioned medium. Differentiation of FDCP-mix cells was
performed as previously described by Bruno et al. (2004). Briefly, in the
erythroid differentiation for apoptosis analysis, the FDCP-mix cells were
cultured in IMDM supplemented with 20% FCS and 100 ng/ml SCF, 10 ng/ml
IL-6, 0.2 mM hemin and 10 U/ml Epo. In neutrophil differentiation condition,
the growth factor concentrations were 10 ng/ml SCF and 10000 U/ml G-CSF.
For colony assay, cells were plated in MethoCult M3234 (StemCell
Technologies, Inc.) containing 0.01 ng/ml IL-3, 100 ng/ml SCF and 10 U/ml
Epo, at 500/ml or at adjusted densities to obtain appropriate numbers of colonies

for scoring. The annexin V–PE apoptosis detection kit (BD Pharmingen) was
used for apoptosis analysis following supplier's instructions.

Modeling

Established regulatory influences
There are many possibilities to formalize the circuit in Fig. 2. One can

describe the detailed molecular mechanisms and use a chemical–kinetic
formalism. However, the most robust observations, repeated in various
experimental systems in different species, concern functional, qualitative
relationships between the variables (GATA1 and PU.1) (Galloway et al.,
2005; Graf, 2002) whereas molecular processes in vivo, such as post-
translational events (phosphorylation, dimerization, regulated proteolysis)
remain largely uncharacterized and the published knowledge represent only
an idiosyncratic subset of biochemical observations. At the current stage of
knowledge they are of qualitative nature and neglect the abundant regulatory
inputs from factors outside the modeled circuit. A model describing
molecular mechanisms within the circuits may hence suffer more from
ignoring inputs from outside the circuit than one that is based on
demonstrated functional influences from overexpression or inhibition
experiments (Galloway et al., 2005; Graf, 2002; Laslo et al., 2006). Thus,

Fig. 2. The GATA1–PU.1 gene regulatory circuit and its dynamic behavior. Didactical schemes of state space. (A, D) Structure of the gene circuit with mutual
inhibition between the two transcription factors, GATA1 and PU.1 and without (A) or with (D) auto-stimulation. x1 and x2, system variables for activity of GATA1 and
PU.1, respectively. Typical dynamic behavior for circuit A (bistability) is shown in the state space representations in panels B and C; and for circuit D (tristability) is
shown in panels E and F. (B, E) Flows of S(t) starting from a grid of initial states in GATA1–PU.1 state space. In this example, n=4, k1=k2=1, θ=0.5, a1=a2=a=0
for panels B, C and a=1 for panels E, F, and b1=b2=b=1. Black solid circles denote steady states, the attractors A, B and C, and empty circle, the saddle C′. (C, F)
“Attractor landscape” with a vertical dimension (visualized by contour curves) representing the negative logarithm of the simulated probability that a state S is at
position (x1, x2). The landscape is for illustration purposes and is not a true potential function. Attractor C corresponds to the progenitor state, while attractors A and B
represent the erythroid and the myeloid states, respectively.
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Boolean networks
Kauffman, S, Homeostasis and differentiation in random 
genetic control networks
Nature 224, pp 177, 1969

• Random network
• State of the system, or gene activity 

profile:    (0,1,1,0,0,1,1,1,0,...,0)
• Random Boolean rules 

➡ p - prob. output value 1

• State changes in time: trajectory 
in nD space

• Structure of state space 
determines all possible dynamics

Basic structure of boolean networks

In the boolean idealization a genetic network consists of
a number (n) of “genes” (used here in a wider sense to
include also the encoded protein) which can either be ac-
tive (“on”: the gene is expressed and its product is in an
active conformation) or inactive (“off”; Fig. 1). The
genes/proteins interact with each other in a way precise-
ly determined by the highly specific molecular interac-
tions. These in turn define the interconnections between
all the genes/proteins of the genome, which together
form a “wiring diagram” for a particular genome (Fig.
2A).

The smallest functional unit of the network is the
gene (with its encoded protein) which can be regarded as
an information processing unit [27] (Fig. 1). A gene X
(or protein X) which regulates other genes/proteins,

transforms its inputs, the regulatory factors that bind to
X as defined by the wiring diagram, into an output,
which is the activity state of X itself in acting on its
“downstream” substrates. For every gene/protein a logi-
cal (boolean) function determines how the activity pat-
tern of the set of input genes/proteins (A, B in Fig. 1) is
to be translated into the output. Figure 1 shows one ex-
ample of such a logical function. Thus, a change in the
activity status of any unit, for example, the flipping of an
“on” state (=1) to an “off” state (=0) for a given gene,
has “downstream” effects – as determined by the struc-
ture and logics of its connections. Boolean functions can
be much more complex and involved than the simple
two-input example of Fig. 1, such that essential details of
regulation, such as differential affinity of competing li-
gands, hierarchical order of binding during assembly of
multimeric complexes, and multiple thresholds for vari-
ous catalytic activities can be absorbed in the boolean
formalism. However, even a network with simple bool-
ean functions gives rise to a global behavior that recapit-
ulates the dynamic features of the regulation of cellular
states.

In the language of genetic networks one can define a
state of a cell at a given time point by the activity status
of each of the individual genes in the genome, which
collectively form a genome-wide gene activity pattern,
or profile (GAP). Such a profile of the activity states, or
GAP, of all the individual genes of a genome with n
genes can be depicted as a string of length n, such as
(1100111...110), which defines for a given cell a network
state at a given moment (Fig. 2B). Graphically, each
GAP represents one point (dots in Fig. 3) in the n-dimen-
sional state space formed by the set of all possible
GAPs. Similar GAPs (i.e., those that differ in the activity
value at only one or a few genes) lie close together in the
state space. In a genome with n=100,000 genes (the esti-
mated size of the human genome), if each gene can only
be either active or inactive, the state space contains
2n=2100,000=1030,000 GAPs, or different strings of length n
consisting of a combination of 1s and 0s. Thus the num-
ber of combinatorically possible GAPs that a genome
can generate is astronomical!

However, computer simulations [18] show that for a
certain class of random genetic networks whose wiring
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Fig. 1A,B The basic element of a boolean network: genes as in-
formation processing unit. A An example of a basic information
processing unit, X, of a genetic network, and its regulation. Every
square box represents a unit, which can be a gene or its protein, in
the network. Each gene/protein can be in the active (=1) or inac-
tive (=0) state. In this example, X receives two inputs, A and B.
The output is the state of X that ensues as a result of the activity
state of the inputs and a boolean function for X, as defined in the
“look-up table” (right). The boolean function for X thus deter-
mines the next state of X, depending on the activity configuration
of the inputs it receives. In the example function, B can force X to
be active (whenever B=1, then X=1), while A is necessary but not
sufficient to inactivate X (A=1 leads to X=0 only if B=0). B A
concrete example of this specific boolean function is the posttrans-
lational regulation of the cell cycle regulator, retinoblastoma pro-
tein (pRb). The activity of pRb in controlling cell cycle progres-
sion is blocked when it is phosphorylated by a kinase enzyme, cy-
clin-dependent kinase (cdk). The enzyme cdk is always expressed
but needs to be activated by association with another protein, a cy-
clin. The activity of the cyclin-cdk complex is blocked when a cdk
inhibitor, such as p27, binds to the complex [30]. In the language
of boolean functions, X in the example represents pRb and is in
the active (X=1) state by default, i.e., when both A and B are ab-
sent: (A=0, B=0). X has two inputs, A, representing the cyclin
which can cause inactivation X (pRb) by activating the cdk and B,
the cdk inhibitor p27, which inhibits the action of A. Note that the
kinase (cdk) itself is constitutively present and is not represented
in the boolean function. In the presence of A (cyclin) but not B
(p27), i.e., (A=1, B=0), X (pRb) is phosphorylated (small circles
on X), thus inactive (X=0). If B (p27) is present, then even if A
(cyclin) is present (A=1, B=1), X (pRb) remains active (X=1)

(NOT A) OR B



Random Boolean networks 
have an ordered regime

• Only a small fraction of all 
cell states are stable

• The system does not visit all 
possible states
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Fig. 2. Dynamics of a 2-gene (mutual inhibition) circuit. A. Two-dimensional state space = B-C-plane. Axes represent expression levels of

genes B and C. Each point in this plane is a circuit configuration, or state of the system, [B, C]. The flows are shown: trajectories starting from
a regular grid of initial states (small dots). The few arrows on the trajectories indicate flow direction. S1, S2 denote the two attractor states (grey
dot). * represents the saddle on the [B = C]-diagonal (separatrix) which separates the two basins of attraction in this symmetrical system. B.
Computed attractor landscape represented by contour lines over the B–C state space. The “height” (vertical axis) is proportional to the negative

logarithm of the probability for the circuit to be at a given state [B,C]; thus the lower the elevation, the more probable = the more stable. C.

Purely schematic representation of an “attractor landscape” for a high-dimensional state space, and the underlying hypothetical 10-gene network

and associated expression profile. Again, each point represents a network state (expression profile). The large arrow represents an attractor state

transition. Note that states S∗(t2) and S∗(t3) are attractor states, while S(t1) is a transient, instable state.

trajectory S(t) until it hits the attractor state S1 with
[B >> C] where B is high enough so that its own

inactivation rate (which is proportional to the level of

B) is in balance with its basal synthesis rate.
Since we have a two-dimensional state space, we

can use the third dimension to display something else

than a gene expression level. This allows us to more

formally establish the notion of a landscape by repre-

senting an important quality related to the vector flow

of Fig. 2A: the stability of each state S(t) or configu-
ration [B, C], defined by the expression levels xB(t)
and xC(t). As we have seen above, stability becomes
manifest when we exert small perturbations to the cir-

cuit states. By adding “gene expression noise” (ran-

dom small fluctuation of the levels of B and C as ob-

served in single cell analysis [55]), we can thus apply

systematic perturbations to determine the stability of

each state [B, C] in our grid in the xy plane as the
probabilityP of a state [B, C], i.e, P ([B,C]), to main-
tain its position under noise. We then plot the nega-

tive logarithm of P for each [B, C]-configuration in
the third, z-dimension, -ln(P ([B,C]). Then, the more
“probable” a state, the lower it lies, capturing the notion

of stability [40]. The quantity –ln(P ) forms a kind of
“energy landscape”with valleys representing the stable

attractor states and hilltops and crests representing un-

• Attractors:
• Fixed points: a state in 

which all Boolean rules are 
satisfied 

• Limit cycles: a finite number 
of states through which the 
system cycles

• Attractor basins



Physicists love this. Biology... 
not so much

“Random” is not a good interdisciplinary word.
Reka Albert & Hans G. Othmer 

components (Reinitz and Sharp, 1995; von Dassow et al.,
2000; Gursky et al., 2001). While it is widely thought
that merely specifying the topology of a control network
(i.e. the connections between nodes) places few con-
straints on the dynamics of the network, our purpose
here is to demonstrate that in one well-characterized
system, knowledge of the interactions together with their
signatures, by which we mean whether an interaction is
activating or inhibiting, is enough to reproduce the main
characteristics of the network dynamics.

The genes involved in embryonic pattern formation in
the fruit fly Drosophila melanogaster, as well as the
majority of the interactions between them, are known
(for recent reviews see Ingham and McMahon, 2001;
Sanson, 2001; Hatini and DiNardo, 2001). As in other
arthropods, the body of the fruit fly is composed of
segments, and determination of the adult cell types in
these segments is controlled by about 40 genes organized
in a hierarchical cascade comprising the gap genes, the
pair-rule genes, and the segment polarity genes (Hooper
and Scott, 1992). These genes are expressed in con-
secutive stages of embryonic development in a spatial
pattern that is successively more precisely defined, the
genes at one step initiating or modulating the expression
of those involved in the next step of the cascade. While
most of these genes act only transiently, the segment
polarity genes are expressed throughout the life of the
fly. The segment polarity genes refine and maintain
their expression through the network of intra- and

intercellular regulatory interactions shown in Fig. 1. The
stable expression pattern of these genes (specifically the
expression of wingless and engrailed) defines and
maintains the borders between different parasegments
(the embryonic counterparts of the segments) and
contributes to subsequent developmental processes,
including the formation of denticle patterns and of
appendage primordia (Hooper and Scott, 1992; Wolpert
et al., 1998). Homologs of the segment polarity genes
have been identified in vertebrates, including humans,
which suggests strong evolutionary conservation of
these genes.

The segment polarity genes encode for the transcrip-
tion factor engrailed (EN), the cytosolic protein cubitus
interruptus (CI), the secreted proteins wingless (WG)
and hedgehog (HH), and the transmembrane receptor
proteins patched (PTC) and smoothened (SMO) in-
volved in transduction of the HH signal.

The pair-rule gene sloppy paired ðslpÞ is activated
before the segment polarity genes and expressed
constitutively thereafter (Grossniklaus et al., 1992;
Cadigan et al., 1994). slp encodes two forkhead domain
transcription factors with similar functions that activate
wg transcription and repress en transcription, and since
they are co-expressed we designate them both SLP. The
wg gene encodes a glycoprotein that is secreted from the
cells that synthesize it (Hooper and Scott, 1992; Pfeiffer
and Vincent, 1999), and can bind to the Frizzled (FZ)
receptor on neighboring cells. Binding of WG to the FZ

Fig. 1. The network of interactions between the segment polarity genes. The shape of the nodes indicates whether the corresponding substances are
mRNAs (ellipses), proteins (rectangles) or protein complexes (octagons). The edges of the network signify either biochemical reactions (e.g.
translation) or regulatory interactions (e.g. transcriptional activation). The edges are distinguished by their signatures, i.e. whether they are activating
or inhibiting. Terminating arrows ð-Þ indicate translation, post-translational modifications (in the case of CI), transcriptional activation or the
promotion of a post-translational modification reaction (e.g. SMO determining the activation of CI). Terminating segments ðBÞ indicate
transcriptional inhibition or in the case of SMO, the inhibition of the post-translational modification reaction CI-CIR:

R. Albert, H.G. Othmer / Journal of Theoretical Biology 223 (2003) 1–182

Drosophila segment 
polarity network



Boolean rules and correct 
topology are sufficient!

• The network topology was know, 
most Boolean rules could be 
inferred from literature

• Small enough system for exact 
enumeration!

‘‘ACT and not INH’’, where ACT represents the
activators and INH the inhibitors. Moreover, if this
mRNA is translated into a protein, its state enters the
Boolean function of the protein. This type of network
modeling is rooted in the pioneering work of Kauffman
(1969, 1993) on random Boolean networks and of
Thomas (Thomas, 1973; Thomas and D’Ari, 1990) on
Boolean models describing generic gene networks. The
novelty of our work lies in the fact that we base
the Boolean model on the known topology of the
Drosophila segment polarity network.

Expression of the segment polarity gene occurs in
stripes that encircle the embryo, and therefore we
can treat the two-dimensional pattern as one-dimen-
sional. We consider a line of 12 cells corresponding to
three parasegment primordia (i.e. the spatial regions
that will become the parasegments), and impose periodic
boundary conditions on the ends. We use four cells
per parasegment primordium because when expression
of the segment polarity genes begins, a given gene is
expressed in every fourth cell. The use of 12 cells
rather than 4 allows better illustration of the patterns,
but throughout the analysis we assume that the
initial pattern of the segment polarity genes is repeated
every four cells. We concentrate on the network
shown in Fig. 1, but do not include FZ and smo in our
base network, because these nodes are not regulated
by other nodes in the network. Consequently, the total
number of nodes in the model system is n !N ¼ 15# 12
or 180.

The states of the nodes evolve in discrete time steps
under the following algorithm. We choose a time
interval that is larger or equal to the duration of all
transcription and translation processes, and we use this
interval as the length of a unit time step. We then
prescribe an initial state for each node, and the state at
the next time step is determined by the Boolean function
Fi for that node. If xtij is the state of the i-th node in the
j-th cell at time t; and x ¼ ðx11;y; xnN Þ; then the next
state of the network is xtþ1 ¼ FðxtÞ; which defines a
discrete dynamical system whose iteration determines
the evolution of the state of all nodes. A fixed point of
F is a time-invariant state of the system, whereas a fixed
point of Fp for a minimal p > 1 represents a state that
repeats periodically with least period p: Since the
objective is to obtain the experimentally-observed stable
expression pattern of the segment polarity genes starting
from wild-type initial conditions, one test of the model is
whether the state evolves to a fixed point that
corresponds to this pattern.

The Boolean interaction functions are constructed
from the interactions between nodes displayed in Fig. 1.
In order to focus on the effects of the topology of the
segment polarity network and the signature of the
interactions on the predicted steady states, the model
is based on the simplest assumptions concerning the

interactions between nodes. These assumptions can be
summarized as follows:

(i) the effect of transcriptional activators and inhibi-
tors is never additive, but rather, inhibitors are
dominant;

(ii) transcription and translation are ON/OFF func-
tions of the state;

(iii) if transcription/translation is ON, mRNAs/
proteins are synthesized in one time step;

(iv) mRNAs decay in one time step if not transcribed;
(v) transcription factors and proteins undergoing post-

translational modification decay in one time step if
their mRNA is not present.

For example, EN is translated from en; and therefore
ENtþ1

i ¼ 1 if enti ¼ 1: Since EN is a transcription factor,
it is assumed that its expression will decay sufficiently
rapidly that if enti ¼ 0; then ENtþ1

i ¼ 0: These two
assumptions mean that ENtþ1

i does not depend on ENt
i ;

only on the expression of en; and therefore

ENtþ1
i ¼ enti : ð1Þ

Table 1 gives an overview of the Boolean functions for
each node, which hereafter are labeled by their
biochemical symbol. In each case, subscripts signify
spatial position (i.e. cell number) and superscripts
signify time. A detailed rationale for our choice of
Boolean rules used for updating the state of each node is
presented in the appendix.

3. Functional topology of the segment polarity network

The rules for advancing the current state of the
network given in Table 1 can be used to construct an
expanded graph that reflects the function of the
network. Consider the transcription of the hh gene.
Fig. 1 shows that hh has two incoming edges, one from
EN and one from CIR, and Table 1 shows that
transcription of the hh gene requires both the presence
of the EN protein and the absence of the CIR protein.
To represent this conjunction in a graphical form, one
can say that hhtþ1 depends on the current state of a
‘‘pseudo-node’’ that we denote by ECR (see Fig. 2). The
state of this new node is one whenever ENt ¼ 1 and
CIRt ¼ 0; and zero otherwise. We can also represent the
dependence of the pseudo-node ECR on EN and CIR in
a graphical form by introducing a ‘‘complementary’’
pseudo-node, CIR; that is expressed whenever CIR is
not. In order to take into account the inter-dependence
of CIR and CIR we connect them with a symmetrical
(non-directed) edge. Finally, we draw two directed edges
starting from EN and CIR and ending in ECR; to
represent the dependence of ECR on the expression of
EN and CIR (see Fig. 2).
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where the operators Tor and Tand correspond to the
updating processes described above. It is tempting to
imagine these operators as matrices, but unfortunately
the ‘‘and’’ and ‘‘or’’ operators cannot be linearized (i.e.
‘‘A and B’’ cannot be written as a linear combination of
A and B).

While it is not possible to follow the evolution of the
network’s expression analytically, we can gain insight
into it by studying the cluster (group) of nodes that can
be activated by the expression of a given node. We can
estimate the size of this cluster by successively following
the directed edges starting from the node, then those
starting from the endpoints of these edges and continu-
ing until the edges leave Fig. 3. This method gives us
an upper bound for the number of activated nodes, since
in most cases additional conditions must be satisfied
in order for a node to be activated. Note that in this
method we cannot follow the symmetrical edges,
since their endpoints have opposite expressions. The
absence of EN (or conversely the presence of EN) gives
the largest activated cluster, containing ci, CI, CIA, ptc,
PTC, PH, wg, and WG. A separate activated cluster
starts with the presence of en, and contains EN, hh and
HH. These activating clusters indicate that the stripe of
en and hh expression never overlaps with those of wg; ptc
and ci: This separation into anterior and posterior
compartments expressing different genes is well-known,
in fact, it is the basis for calling these genes ‘‘segment
polarity genes’’ (Wolpert et al., 1998).

While the majority of the activating effects propagate
outside the cell, there are three cases in which an
activation can return to its source. In other words, three
short cycles exist in the network of Fig. 3. The first two
cycles connect wg2 with ðwCACRÞ2 or ðwSCRÞ2 and the
third connects PTC2 with P2H1H3: These cycles ensure
the maintenance of wg and PTC if all the conditions for
the expression of the pseudo-node in the cycle are met
(i.e. wg is maintained if SLP or CIA is present and CIR
is absent, PTC is maintained if HH is not expressed in
the neighboring cells). The successful activation of the
wg cycle can induce the stable expression of en and hh in
those neighboring cells where neither SLP nor CIR is
expressed, and stable expression of PTC leads to stable
CIR expression two cells removed from en expression.
The results presented in the following sections confirm
the special role of these cycles in the dynamics of the
segment polarity gene expression pattern.

4. Comparison between numerical and
experimental results

The segment polarity genes are activated by the pair-
rule genes in the cellular blastoderm phase (stage 5
according to the classification of Campos-Ortega and
Hartenstein, 1985) of Drosophila embryogenesis, and

maintain the parasegment borders and later the polarity
of the segments from the end of gastrulation through
germ-band elongation (stages 8–11, see Wolpert et al.,
1998). The parasegment borders form between the wg
and en=hh expressing cells (Hooper and Scott, 1992;
Wolpert et al., 1998). Since our model is intended to
describe the effect of the segment polarity genes in
maintaining the parasegment border, the patterns of
segment polarity genes formed before stage 8 can be
considered as given initial states, and the final stable
state should coincide with the wild-type patterns
maintained during stages 9–11.

The initial state of each parasegment primordium,
based on the experimental observations of stage 8
embryos, includes a two-cell-wide SLP stripe in the
posterior half (Cadigan et al., 1994), a single-cell-wide
wg stripe in the most posterior part (Hooper and Scott,
1992), single-cell-wide en and hh stripes in the most
anterior part (Tabata et al., 1992; Hooper and Scott,
1992), and ci and ptc expressed in the posterior three-
fourths (Hidalgo and Ingham, 1990; Hooper and Scott,
1992; Taylor et al., 1993). Since the proteins are
translated after the mRNAs are transcribed, we assume
that the proteins are not expressed in the initial state.
The one-dimensional representation of the mRNA and
protein patterns is shown in Fig. 4(a).

We iterate the dynamical system defined by the rules
in Table 1 starting from the initial state described above.
We find that after only six time steps, the expression
pattern stabilizes in a time-invariant spatial pattern
(see Fig. 4(b)) that coincides with the experimentally

en
EN

WG

hh
HH

ptc
PTC

PH

wg

(b)(a)

CIR

CIA

CI

ci
SMO

Fig. 4. Wild-type expression patterns of the segment polarity genes.
Here and hereafter left corresponds to anterior and right to posterior
in each parasegment. Horizontal rows correspond to the pattern of
individual nodes—specified at the left side of the row—over two full
and two partial parasegments. Each parasegment is assumed to be four
cells wide. A black (gray) box denotes a node that is ON (OFF). (a)
The experimentally observed initial state before stage 8. en, wg and hh
are expressed in one-cell-wide stripes, while the broad ptc and ci stripes
are complementary to en. (b) The steady state of the model when
initialized with the pattern in (a). This pattern is in agreement with the
observed gene expression patterns during stages 9–11 (see text).
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Start state Stable state

observed wild-type expression of the segment polarity
genes during stages 9–11. Indeed, wg and WG are
expressed in the most posterior cell of each parasegment
(Ingham et al., 1991), while en; EN, hh and HH are
expressed in the most anterior cell of each parasegment,
as is observed experimentally (Ingham et al., 1991;
Tabata et al., 1992), ptc is expressed in two stripes of
cells, one stripe on each side of the en-expressing cells,
the anterior one coinciding with the wg stripe (Hidalgo
and Ingham, 1990; Hooper and Scott, 1992). SMO is
present in broad stripes whose anterior border coincides
with the anterior border of the wg stripe and whose
posterior border extends about one cell further from the
en stripe (Alcedo et al., 2000). ci is expressed almost
ubiquitously, with the exception of the cells expressing
en (Eaton and Kornberg, 1990; Alexandre et al., 1996).
CIA is expressed in the neighbors of the HH-expressing
cells, while CIR is expressed far from the HH-expressing
cells (Aza-Blanc and Kornberg, 1999). Note that while
the majority of the proteins are expressed in the same
cells as their mRNAs, this is not the case for PTC.
Indeed, while the ptc stripe separates into two by stage
11 (Taylor et al., 1993), the PTC stripe remains broad.
There are indications that the level of PTC decreases in
the middle of the stripe (Taylor et al., 1993), but the
existence of PTC in those cells is very important because
their signaling maintains the production of CIR (see
Fig. 4(b)).

We have also done a systematic analysis of the
patterns obtained when the initial expression of in-
dividual genes or groups of genes differs from the wild-
type initial condition. In principle, the attractor for
some initial conditions could be periodic in time, but we
have found that the only stable attractors are steady
states. Since the purpose of the segment polarity
network is to stabilize and maintain the parasegment
borders, this result is biologically realistic.

We first concentrate on the overexpressed initial
patterns, as these provide direct comparison with heat-
shock experiments. In these experiments the initial
expression of a selected gene is ubiquitously induced
following a heat shock. According to these experiments,
the wg and ptc stripes expand anteriorly when hh is
ubiquitously induced (Gallet et al., 2000). When the
same induction is done on en; broadened en stripes result
(Heemskerk et al., 1991), and narrower ci stripes emerge
after a transient decay of ci (Schwartz et al., 1995). Our
model indicates that these two cases lead to the same
steady-state expression pattern that incorporates all
experimental observations: broad en; wg; ptc and hh
stripes, and narrower ci stripes (see Fig. 5(a)). We can
understand the process leading to this state from the
functional topology of the network (Fig. 3): ubiquitous
hh means that hh is not expressed in any of the cells, nor
is any CiSMihjhk; thereby removing the only path to the
production of CIR. This means that CIA is produced in

each ci -expressing cell, and it activates the transcription
of wg and ptc in a wider domain.

Another method for inferring gene interactions
experimentally is to silence selected genes by mutations.
These inactive genes can be simulated by setting the
expression of the transcript to zero and not updating it
during the evolution of the system. Our results indicate
that if any of en; wg or hh are blocked, while the other
genes are initiated in the wild-type pattern (see
Fig. 4(a)), the steady state is a pattern with no en; wg;
ptc or hh; as in Fig. 5(b). We can see from Fig. 3 that
each of these mutations disrupts intercellular signaling,
causing ubiquitous expression of CIR, which in turn
leads to ubiquitous repression of transcription. In
agreement with this result, it has been observed
experimentally that the hh expression in en null embryos
starts normally, but disappears before stage 10 (Tabata
et al., 1992). In wg null embryos, en is initiated normally
but fades away by stage 9, as observed by DiNardo et al.
(1988), while ci is ubiquitously expressed (Schwartz et al.,
1995). In hh mutant embryos the wg expression
disappears by stage 10 (Hidalgo and Ingham, 1990), as
does the expression of ptc; and there is no segmentation
(Gallet et al., 2000). All these experimental results are in
excellent agreement with the numerically obtained
pattern shown in Fig. 5(b).

WG

en
EN

hh
HH

ptc

CIR

PH

ci
CI

CIA

PTC

SMO

(a) (b)

wg

Fig. 5. Ectopic expression patterns of the segment polarity genes
obtained from the model by varying the initial conditions or
inactivating certain nodes. (a) Broad-type expression pattern. The
stripes of en; wg; ptc and hh are broader than normal, while the ci stripe
narrows and CIR is not expressed. The anterior broadening of the en
stripe together with the posterior broadening of the wg stripe induces
an ectopic ‘‘border’’ in the middle of the parasegment. This state arises
if wg; en or hh is initiated in broader stripes than wild type. This
pattern is in perfect agreement with the experimentally observed gene
expression after heat shock experiments on en and hh (see text). A
similar pattern, only without ptc; PTC and PH expression, is obtained
from the model when the expression of ptc is kept OFF, in agreement
with observations on ptc mutants (see text). (b) Stable pattern with no
stripes for wg; en; hh and ptc: This pattern arises if any of wg; en or hh is
kept OFF in the model, when wg initiation is substantially delayed, or
when intercellular interactions are disrupted.
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The yeast cell cycle

where aij ! ag for a green arrow from protein j to protein i and
aij ! ar for a red arrow from j to i. We first focus on the case
where all of the other checkpoints are always off, except that
of the cell size. That is, the cell size checkpoint will act as a start
signal, whereas other checkpoints will always let the ‘‘traffic’’
pass when it come to it. We therefore arrive at a slightly
simplified network shown in Fig. 1B, with 11 nodes (plus a
signal node). We have also added ‘‘self-degradation’’ (yellow
loops) to those nodes that are not negatively regulated by
others. [This is a simplification for the actual degradation
processes. See supporting information for details.] The deg-
radation is modeled as a time-delayed interaction: if a protein
with a self yellow arrow is active at time t (Si(t) ! 1) and if its
total input is zero from t " 1 to t ! t " td, it will be degraded
at t ! t " td, i.e., Si(t " td) ! 0. The results presented below
were obtained with ag ! #ar ! 1 and td ! 1. As will be
discussed later, the overall dynamic properties of the network
are not very sensitive to the choice of these parameters.

Fixed Points. We use the dynamic model described above to study
the time evolution of the protein states. First, we study the
attractors of the network dynamics by starting from each of the
211 ! 2,048 initial states in the 11-node network of Fig. 1B. We
find that all of the initial states eventually f low into one of the
seven stationary states (fixed points) shown in Table 1. Among
the seven fixed points, there is one big fixed point attracting 1,764
or $86% protein states. Remarkably, this super stable state is
the biological G1 stationary state. The advantage for a cell’s
stationary state to be a big attractor of the network is obvious:
the stability of the cell state is guaranteed. Under normal

conditions, the cell will be sitting at this fixed point, waiting for
the signal for another round of division.

Biological Pathway. Next, we start the cell-cycle process by ‘‘ex-
citing’’ the G1 stationary state with the cell size signal, and
observe that the system goes back to the G1 stationary state. The
temporal evolution of the protein states, presented in Table 2,
indeed follows the cell-cycle sequence, going from the excited G1
state (the START) to the S phase, the G2 phase, the M phase,
and finally to the stationary G1 state. This is the biological
trajectory or pathway of the cell-cycle network.

To investigate the dynamical stability of this biological path-
way, we study the dynamic trajectories of all 1,764 protein states
that will f low to the G1 fixed point. In Fig. 2, each of these protein
states is represented by a dot, with the arrows between them
indicating dynamic flows from one state to another. The bio-
logical pathway is colored in blue and so is the node representing
the G1 stationary state. We see that the dynamic flow of the
protein states is convergent onto the biological pathway, making
the pathway an attracting trajectory of the dynamics. With such
a topological structure of the phase diagram of protein states, the
cell-cycle pathway is a very stable trajectory; it is very unlikely
for a sequence of events, starting at the beginning (or at any
other point) of the cell-cycle process, to deviate from the
cell-cycle pathway. Interestingly, the topology of the converging
trajectories shown in Fig. 2 is reminiscent of the converging
kinetic pathways in protein folding where a protein sequence is
facing the challenge of finding the unique native state among a
huge number of conformations (10–12).

Comparison with Random Networks. To investigate how likely a big
fixed point and a converging pathway can arise by chance, we

Fig. 1. (A) The cell-cycle network of the budding yeast. (B) Simplified cell-cycle network with only one checkpoint ‘‘cell size.’’

Table 1. The fixed points of the cell-cycle network

Basin size Cln3 MBF SBF Cln1,2 Cdh1 Swi5 Cdc20 Clb5,6 Sic1 Clb1,2 Mcm1

1,764 0 0 0 0 1 0 0 0 1 0 0
151 0 0 1 1 0 0 0 0 0 0 0
109 0 1 0 0 1 0 0 0 1 0 0

9 0 0 0 0 0 0 0 0 1 0 0
7 0 1 0 0 0 0 0 0 1 0 0
7 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0

Each fixed point is represented in a row. The first column is the size of the basin of attraction for the fixed point; the other 11 columns
show the protein states of the fixed point. The protein states of the biggest fixed point correspond to that of the G1 stationary state.
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The interactions between proteins, DNA, and RNA in living cells
constitute molecular networks that govern various cellular func-
tions. To investigate the global dynamical properties and stabilities
of such networks, we studied the cell-cycle regulatory network of
the budding yeast. With the use of a simple dynamical model, it
was demonstrated that the cell-cycle network is extremely stable
and robust for its function. The biological stationary state, the G1

state, is a global attractor of the dynamics. The biological pathway,
the cell-cycle sequence of protein states, is a globally attracting
trajectory of the dynamics. These properties are largely preserved
with respect to small perturbations to the network. These results
suggest that cellular regulatory networks are robustly designed for
their functions.

Despite the complex environment in and outside of the cell,
various cellular functions are carried out reliably by the

underlying biomolecular networks. How is the stability of a cell
state achieved? How can a biological pathway take the cell from
one state to another reliably? Evolution must have played a
crucial role in the selection of the architectures of these networks
for them to have such a remarkable property. Much attention has
recently been focused on the ‘‘topological’’ properties of large-
scale networks (1–5). It was argued that a power-law distribution
of connectivity, which is apparent for some bionetworks (2, 4),
is more tolerable against random failure (1). Here we address
this question from a dynamic systems point of view. We study the
network regulating the cell cycle of the budding yeast, investi-
gating its global dynamical property and stability. We find that
the stationary states of the cell, or states at the checkpoints in
general, correspond to global attractors of the dynamics: almost
all initial protein states flow to these biological stationary states.
Furthermore, the biological pathway of the cell-cycle sequence,
which is a particular trajectory in the state space, is a globally
stable and attracting trajectory of the dynamics. These dynamic
properties, arising from the underlying network connection, are
also robust against small perturbations to the network. They are
directly responsible for the robustness of the cellular process.

The Yeast Cell-Cycle Network
The cell-cycle process, by which one cell grows and divides into
two daughter cells, is a vital biological process the regulation of
which is highly conserved among the eukaryotes (6). The process
consists of four phases: G1 (in which the cell grows and, under
appropriate conditions, commits to division), S (in which the
DNA is synthesized and chromosomes replicated), G2 (a ‘‘gap’’
between S and M), and M (in which chromosomes are separated
and the cell is divided into two). After the M phase, the cell
enters the G1 phase, hence completing a ‘‘cycle.’’ The process has
been studied in great detail in the budding yeast Saccharomyces
cerevisiae, a single-cell model eukaryotic organism (see support-
ing information, which is published on the PNAS web site, for
references). There are !800 genes involved in the cell-cycle
process of the budding yeast (7). However, the number of key
regulators that are responsible for the control and regulation of
this complex process is much smaller. Based on extensive
literature studies, we have constructed a network of key regu-
lators that are known so far, as shown in Fig. 1A (for details, see
supporting information).

There are four classes of members in this regulatory network:
cyclins (Cln1, -2, and -3 and Clb1, -2, -5, and -6, which bind to
the kinase Cdc28); the inhibitors, degraders, and competitors of
the cyclin!Cdc28 complexes (Sic1, Cdh1, Cdc20, Cdc14); tran-
scription factors (SBF, MBF, Mcm1!SFF, Swi5); and check-
points (the cell size, the DNA replication and damage, and the
spindle assembly). Green arrows in Fig. 1 represent positive
regulations. For example, under rich nutrient conditions and
when the cell grows large enough, the Cln3!Cdc28 will be
‘‘activated’’, which in turn activates (by phosphorylation) a pair
of transcription factor groups, SBF and MBF, which transcrip-
tionally activate the genes of the cyclins Cln1 and -2 and Clb5 and
-6, respectively. Red arrows in Fig. 1 represent ‘‘deactivation’’
(inhibition, repression, or degradation). For example, the pro-
tein Sic1 can bind to the Clb!Cdc28 complex to inhibit its
function, Clb1 and -2 phosphorylates Swi5 to prevent its entry
into the nucleus, whereas Cdh1 targets Clb1 and -2 for degra-
dation. The cell-cycle sequence starts when the cell commits to
division by activating Cln3 (the START). The subsequent ac-
tivity of Clb5 drives the cell into the S phase. The entry into and
exit from the M phase is controlled by the activation and
degradation of Clb2. After the M phase, the cell comes back to
the stationary G1 phase, waiting for the signal for another round
of division. Thus the cell-cycle process starts with the ‘‘excita-
tion’’ from the stationary G1 state by the ‘‘cell-size’’ signal and
evolves back to the stationary G1 state through a well defined
sequence of states.

The Model and Dynamic Properties
In principle, the arrows in the network have very different time
scales of action, and a dynamic model would involve various binding
constants and rates (8, 9). However, because in the cell-cycle
network much of the biology seems to be reflected in the on–off
characteristics of the network components and we are mainly
concerned here with the overall dynamic properties and the stability
of the network, we use a simplified dynamics on the network, which
treats the nodes and arrows as logic-like operations.¶ Thus, in the
model, each node i has only two states, Si " 1 and Si " 0,
representing the active and the inactive state of the protein,
respectively. The protein states in the next time step are determined
by the protein states in the present time step via the following rule:

Si#t ! 1$ " "
1, #

j

aijSj#t$ # 0

0, #
j

aijSj#t$ $ 0

Si#t$, #
j

aijSj#t$ " 0

[1]
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‡To whom correspondence should be addressed. E-mail: qi@pku.edu.cn or tang@
nec-labs.com.

¶Making the time constants of all arrows the same could have disastrous consequences in
network dynamics. However, we are saved for this particular network because of its
intrinsic sequential nature. We have tested the dynamics with varied time scales of action
(phosphorylation and transcriptional activation) for different arrows and obtained similar
results.
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study an ensemble of random networks (13, 14) that have the
same numbers of nodes and links in each color as in the cell-cycle
network. We find that random networks typically have more

attractors (fixed points and limit cycles), with the average
number being 14.28. The sizes of the basins of attraction in the
random networks have a power-law distribution, as shown in Fig.

Table 2. Temporal evolution of protein states for the simplified cell-cycle network of Fig. 1B

Time Cln3 MBF SBF Cln1,2 Cdh1 Swi5
Cdc20 and

Cdc14 Clb5,6 Sic1 Clb1,2 Mcm1!SFF Phase

1 1 0 0 0 1 0 0 0 1 0 0 START
2 0 1 1 0 1 0 0 0 1 0 0 G1

3 0 1 1 1 1 0 0 0 1 0 0 G1

4 0 1 1 1 0 0 0 0 0 0 0 G1

5 0 1 1 1 0 0 0 1 0 0 0 S
6 0 1 1 1 0 0 0 1 0 1 1 G2

7 0 0 0 1 0 0 1 1 0 1 1 M
8 0 0 0 0 0 1 1 0 0 1 1 M
9 0 0 0 0 0 1 1 0 1 1 1 M

10 0 0 0 0 0 1 1 0 1 0 1 M
11 0 0 0 0 1 1 1 0 1 0 0 M
12 0 0 0 0 1 1 0 0 1 0 0 G1

13 0 0 0 0 1 0 0 0 1 0 0 Stationary G1

The right column indicates the cell-cycle phases. Note that the number of time steps in each phase do not reflect its actual duration.

Fig. 2. Dynamical trajectories of the 1,764 protein states (green nodes) flowing to the G1 fixed point (blue node). Arrows between states indicate the direction
of dynamic flow from one state to another. The cell-cycle sequence is colored blue. The size of a node and the thickness of an arrow are proportional to the
logarithm of the traffic flow passing through them.
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Robust in more than one way
only a very small fraction of perturbations will eliminate the fixed
point completely (!B!B " 1). For most perturbations, the relative
changes of the basin size are small. A similar behavior in the changes
of quantity W as results of the perturbations was also seen.
Interestingly, this high ‘‘homeostatic stability’’ (13) is also evident in
the ensemble of random networks of the same size (Fig. 4). In fact,
we found that for random networks with the dynamic rule of Eq.
1 the homeostatic stability increases monotonically with the average
number of arrows per node k (Y.L. and C.T., unpublished work),
which is very different from the random Boolean network where a
‘‘chaotic’’ phase with low homeostatic stability is seen for k # kc
(13). Recent studies suggest that either a scale-free Boolean net-
work (15) or a genetic network with minimal frustration (16) would
also lead to a more stable phase.

To examine the effects of these perturbations on the biological
pathway itself, for each perturbed cell-cycle network we start at
the START state and follow its time evolution. We found that
under perturbation a significant fraction of the trajectories reach
the G1 stationary state and the cell-cycle sequence is by far the
most probable trajectory (Fig. 5).

Other Dynamical Rules. We found that the results are insensitive to
the values of the weights ag and ar in Eq. 1 and to the protein
lifetime td, as long as $ar ! ag and td # 0. For example, with ar
" $10, ag " 1, and td " 4, there exist the same seven fixed points.
The G1 fixed point attracts 90% of all protein states and W " 907.
The network is somewhat more robust against perturbation (see
supporting information). Preliminary results with differential
equations replacing the simple discrete dynamic rule support the
overall conclusions (unpublished data).

Other Checkpoints. We also studied the cases in which one of the
other checkpoints, instead of the ‘‘cell size,’’ will act as the
stop–go signal. We found that, in all cases, there exists a big fixed
point that corresponds to the biological state waiting at the
checkpoint and the biopathway is a converging trajectory. The
studies were done on the full network (Fig. 1 A), keeping only
one checkpoint at a time. The basin size B of the big fixed point
and the convergence measure W of the biopathway for each
checkpoint are, respectively, B " 99.4% and W " 4,257 (InterS),
B " 89.8% and W " 3,821 (Spindle Assembly), B " 99.8% and
W " 4,925 (DNA Damage). For comparison, the corresponding
values for the Cell-Size checkpoint with the full network are B "
90.8% and W " 6,757 (see supporting information).

Discussion
We have demonstrated that the yeast cell-cycle network is robustly
designed. The biological states at the checkpoints are big attractors
and the biopathway is an attracting trajectory. These robust dy-
namical properties are also seen in the life cycle network of the
budding yeast (unpublished data), suggesting that they may be
common features of regulatory networks. The cell-cycle network is
rather stable against perturbations. Note that the network we
studied (Fig. 1A) is only a skeleton of a larger cell-cycle network
with many ‘‘redundant’’ components and interactions (e.g., any
member of the G1 cyclins can, to a large extend, perform the
functions of other members). Thus, we expect the complete net-
work to be even more stable against perturbations.

The idea that aspects of biological systems can be modeled as
dynamic systems and biological states can be interpreted as attrac-

tors has a long history, with examples in neural networks (17, 18),
immune systems (19, 20), genetic networks (21, 13), cell regulatory
network (22), and ecosystems (23). Our study on an actual yeast
cellular network lends support to this idea. Furthermore, our results
suggest that not only do biological states correspond to big fixed
points but the biological pathways are also robust.

Functional robustness has been found in other biological net-
works, e.g., in the chemotaxis of E. coli (in the response to external
stimuli) (24) and in the gene network setting up the segment
polarity in insects development (with respect to parameter changes)
(25, 26). It has also been found at the single molecular level, in the
mutational and thermodynamic stability of proteins (27). In some
sense, biological systems have to be robust to function in complex
(and very noisy) environments. More robust could also mean more
evolvable, and thus more likely to survive; a robust ‘‘module’’ is
easier to be modified, adapted, added-on, and combined with
others for new functions and new environments (28). Indeed,
robustness may provide us with a handle to understand the pro-
found driving force of evolution.

We thank Hamid Bolouri, Terry Hwa, Stuart Kauffman, Hao Li,
Albert Libchaber, Leihan Tang, and Saeed Tavazioe for helpful discus-
sions. The networks and dynamic trajectories are drawn with PAJEK
(http:!!vlado.fmf.uni-lj.si!pub!networks!pajek). This work was partly
supported by the National Key Basic Research Project of China (No.
2003CB715900). T.L. and Y.L. acknowledge the support from the Jun
Zheng foundation.
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Fig. 5. Trajectories of the perturbed cell-cycle network starting from the
START. The trajectories from each kind of perturbations (34 from arrow
deletions, 174 from arrow additions, and 29 from red–green switchings) are
first superimposed on top of each other to form three groups. The three
groups are then superimposed on top of each other with equal weights. The
width of an arrow and the size of a node are proportional to the logarithm of
the number of shared trajectories. The biological pathway is colored blue. The
percentages of the perturbed networks that still evolve to the G1 state from
START are 41.2%, 57.4%, and 64.7% for arrow-deletion, arrow addition, and
color-switching, respectively.
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How about noise?
• Probabilistic cell cycle network

36 Y. Zhang et al. / Physica D 219 (2006) 35–39

Fig. 1. The cell-cycle network of the budding yeast. Each node represents a
protein or a protein complex. Arrows are positive regulation, “T”-lines are
negative regulation, dotted “T”-loops are degradation.

Arrows represent positive interaction, or “activation”. Lines
with a bar at the end represent negative interaction,
or “repression”. Dotted loops with a bar represent self-
degradation. We refer the reader to Ref. [3] for a full biological
account of this network. Here we only give a very brief
summary. There are four phases in the cell-cycle process: the
G1 phase in which the cell grows, the S phase in which the
DNA is copied, the G2 phase in which the cell prepares for
mitosis, and the M phase in which the two chromosome copies
are separated and the cell divides into two. There are several
checkpoints during the process to ensure that the next event will
not happen until the current event is finished. So the process
could be blocked at checkpoints. Following Ref. [3], we keep
only one such checkpoint in the model: “cell size”. Thus the
picture for the cell division process is the following: The cell
is resting on a stationary state G1 (blocked at the checkpoint
until it grows big enough). The “signal” to start the cell-cycle
process comes from the “cell size” which turns on a cyclin
Cln3. Cln3 activates a pair of nodes, SBF and MBF. SBF
and MBF stimulate the transcription of G1/S genes, including
those of Cln2 and Clb5. The S phase cyclin Clb5 initiates
DNA replication, after which the transcription factor complex
Mcm1/SFF is turned on, which stimulates the transcription of
many G2/M genes, including the gene of the mitotic cyclin
Clb2. The cell will exit from mitosis and divide into two after
Clb2 is inhibited and degraded by Cdc20, Cdh1 and Sic1. The
cell (or two cells: the mother and the daughter) now comes back
to the stationary G1 state, waiting for the signal for another
round of division. So from a dynamics point of view, the cell’s
stationary state G1 is a fixed point. A “start” signal will take
it out of the fixed point, and it will then go through a specific
dynamic trajectory (the biological pathway for cell division),
and come back to the fixed point.

In our model, the 11 nodes in the network shown in Fig. 1,
namely Cln3, MBF, SBF, Cln2, Cdh1, Swi5, Cdc20, Clb5, Sic1,
Clb2, and Mcm1, are represented by variables (s1, s2, . . . , s11),

respectively. Each node i has only two values, si = 1 and
si = 0, representing the active state and the inactive state
of the protein i , respectively. Mathematically, we consider the
network evolving on the configuration space S = {0, 1}11; the
211 = 2048 “cell states” are labelled by {n = 0, 1, . . . , 2047}.
The statistical behavior of the cell state at the next time step is
determined by the cell state at the present time step. That is,
the evolution of the network has the Markov property [14]. The
time steps here are logic steps that represent causality rather
than actual times. The stochastic process is assumed to be time
homogeneous. Under these assumptions and considerations, we
define the transition probability of the Markov chain as follows:

Pr (s1(t + 1), . . . , s11(t + 1) | s1(t), . . . , s11(t))

=
11∏

i=1

Pr (si (t + 1) | s1(t), . . . , s11(t)), (1)

where

Pr (si (t + 1) = σi | s1(t), . . . , s11(t))

= exp(β(2σi − 1)T )

exp(βT ) + exp(−βT )
,

if T = ∑11
j=1 ai j s j (t) "= 0, σi ∈ {0, 1}; and

Pr (si (t + 1) = si (t) | s1(t), . . . , s11(t)) = 1
1 + e−α

, (2)

if T = ∑11
j=1 ai j s j (t) = 0. We define ai j = 1 for a positive

regulation of j to i and ai j = −1 for a negative regulation
of j to i . If the protein i has a self-degradation loop, aii =
−0.1. The positive number β is a temperature-like parameter
characterizing the noise in the system [15]. Noticeably, the
actual noises within a cell might not be constant everywhere,
but here we use a system-wide noise measure for simplicity.
To characterize the stochasticity when the input to a node is
zero, we have to introduce another parameter α. This parameter
controls the likelihood for a protein to maintain its state when
there is no input to it. Notice that, when β, α → ∞, this model
recovers the deterministic model of Li et al. [3]. In this case,
they showed that the G1 state (the purple node in Fig. 3) is
a big attractor, and the path (blue nodes → olive-green nodes
→ dandelion nodes → red nodes → purple node in Fig. 3)
is a globally attracting trajectory. Our study focuses on the
stochastic properties of the system.

Because the Markov chain consists of finite states and is
irreducible, every state is accessible to all others. Therefore all
of the 2048 states constitute a communicated recurrent class,
and the Markov chain is ergodic. In this case, there exists a
probability distribution Π = (π0, π1, . . . ,π2047), an invariant
measure, such that, for all states m, n ∈ {0, 1, . . . , 2047},
lim

r→∞ pmn(r) = πn

where pmn(r) is the r -step transition probability from the initial
state m to the target state n. That is to say, when r is big
enough, the probability for the system to reach state n is almost
independent of the starting position m. Even though each state
has a positive probability, the orders of magnitudes of the
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Fig. 1. The cell-cycle network of the budding yeast. Each node represents a
protein or a protein complex. Arrows are positive regulation, “T”-lines are
negative regulation, dotted “T”-loops are degradation.

Arrows represent positive interaction, or “activation”. Lines
with a bar at the end represent negative interaction,
or “repression”. Dotted loops with a bar represent self-
degradation. We refer the reader to Ref. [3] for a full biological
account of this network. Here we only give a very brief
summary. There are four phases in the cell-cycle process: the
G1 phase in which the cell grows, the S phase in which the
DNA is copied, the G2 phase in which the cell prepares for
mitosis, and the M phase in which the two chromosome copies
are separated and the cell divides into two. There are several
checkpoints during the process to ensure that the next event will
not happen until the current event is finished. So the process
could be blocked at checkpoints. Following Ref. [3], we keep
only one such checkpoint in the model: “cell size”. Thus the
picture for the cell division process is the following: The cell
is resting on a stationary state G1 (blocked at the checkpoint
until it grows big enough). The “signal” to start the cell-cycle
process comes from the “cell size” which turns on a cyclin
Cln3. Cln3 activates a pair of nodes, SBF and MBF. SBF
and MBF stimulate the transcription of G1/S genes, including
those of Cln2 and Clb5. The S phase cyclin Clb5 initiates
DNA replication, after which the transcription factor complex
Mcm1/SFF is turned on, which stimulates the transcription of
many G2/M genes, including the gene of the mitotic cyclin
Clb2. The cell will exit from mitosis and divide into two after
Clb2 is inhibited and degraded by Cdc20, Cdh1 and Sic1. The
cell (or two cells: the mother and the daughter) now comes back
to the stationary G1 state, waiting for the signal for another
round of division. So from a dynamics point of view, the cell’s
stationary state G1 is a fixed point. A “start” signal will take
it out of the fixed point, and it will then go through a specific
dynamic trajectory (the biological pathway for cell division),
and come back to the fixed point.

In our model, the 11 nodes in the network shown in Fig. 1,
namely Cln3, MBF, SBF, Cln2, Cdh1, Swi5, Cdc20, Clb5, Sic1,
Clb2, and Mcm1, are represented by variables (s1, s2, . . . , s11),

respectively. Each node i has only two values, si = 1 and
si = 0, representing the active state and the inactive state
of the protein i , respectively. Mathematically, we consider the
network evolving on the configuration space S = {0, 1}11; the
211 = 2048 “cell states” are labelled by {n = 0, 1, . . . , 2047}.
The statistical behavior of the cell state at the next time step is
determined by the cell state at the present time step. That is,
the evolution of the network has the Markov property [14]. The
time steps here are logic steps that represent causality rather
than actual times. The stochastic process is assumed to be time
homogeneous. Under these assumptions and considerations, we
define the transition probability of the Markov chain as follows:

Pr (s1(t + 1), . . . , s11(t + 1) | s1(t), . . . , s11(t))

=
11∏

i=1

Pr (si (t + 1) | s1(t), . . . , s11(t)), (1)

where

Pr (si (t + 1) = σi | s1(t), . . . , s11(t))

= exp(β(2σi − 1)T )

exp(βT ) + exp(−βT )
,

if T = ∑11
j=1 ai j s j (t) "= 0, σi ∈ {0, 1}; and

Pr (si (t + 1) = si (t) | s1(t), . . . , s11(t)) = 1
1 + e−α

, (2)

if T = ∑11
j=1 ai j s j (t) = 0. We define ai j = 1 for a positive

regulation of j to i and ai j = −1 for a negative regulation
of j to i . If the protein i has a self-degradation loop, aii =
−0.1. The positive number β is a temperature-like parameter
characterizing the noise in the system [15]. Noticeably, the
actual noises within a cell might not be constant everywhere,
but here we use a system-wide noise measure for simplicity.
To characterize the stochasticity when the input to a node is
zero, we have to introduce another parameter α. This parameter
controls the likelihood for a protein to maintain its state when
there is no input to it. Notice that, when β, α → ∞, this model
recovers the deterministic model of Li et al. [3]. In this case,
they showed that the G1 state (the purple node in Fig. 3) is
a big attractor, and the path (blue nodes → olive-green nodes
→ dandelion nodes → red nodes → purple node in Fig. 3)
is a globally attracting trajectory. Our study focuses on the
stochastic properties of the system.

Because the Markov chain consists of finite states and is
irreducible, every state is accessible to all others. Therefore all
of the 2048 states constitute a communicated recurrent class,
and the Markov chain is ergodic. In this case, there exists a
probability distribution Π = (π0, π1, . . . ,π2047), an invariant
measure, such that, for all states m, n ∈ {0, 1, . . . , 2047},
lim

r→∞ pmn(r) = πn

where pmn(r) is the r -step transition probability from the initial
state m to the target state n. That is to say, when r is big
enough, the probability for the system to reach state n is almost
independent of the starting position m. Even though each state
has a positive probability, the orders of magnitudes of the
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Fig. 4. The “potential” landscape of the system before and after the critical point: (a) β = 0.01, (b) β = 0.6, (c) β = 1.5, and (d) β = 6.0, all for α = 5. The color
code gives the relative value of the potential function.

this, in Fig. 3 we show an example of the probability flux among
all 2048 states. Each node in Fig. 3 represents one of the 2048
states. The size of a node reflects the stationary distribution
probability of the state. If the stationary probability of a state
is larger than a given threshold value, the size of the node is
in proportion to the logarithm of the probability. Otherwise, the
node is plotted with the same smallest size. The arrows reflect
the net probability flux (only the largest flux from any node is
shown). The probability flux is divided into seven grades, which
are expressed by seven colors: light-green, canary, golden-rod,
dandelion, apricot, peach and orange. The warmer that the color
is, and the wider that the arrow is, then the larger the probability
flux. The width of an arrow is in proportion to the logarithm of
the probability flux that it carries. The arrow representing the
probability flux from the stationary G1 state to the excited G1
state (the START of the cell cycle) is shown by dashed lines.
One observes that, once the system is “excited” to the START of
the cell-cycle process (here by noise, α, and in reality mainly by
signals like “cell size”), the system will essentially go through
the biological pathway and come back to the G1 state. Another
feature of Fig. 3 is that the probability flux from any state other
than those on the biological pathway is convergent onto the
biological pathway. Notice that this diagram also characterizes
the properties of fixed points that are ignored by Li (Ref. [3]).
Those fixed points also converge onto biological pathway. For
β < βc, this feature of a convergent high-flux bio-pathway
disappears.

In the previous discussions, we see that there is a “phase
transition” as a function of the “temperature” in the stochastic
cell-cycle model. The next step is to try to understand
this transition-like behavior. For this purpose, we define a
“potential” function and study the change of the “potential

landscape” as a function of β. Specifically, we define

Sn = − log πn = βEn, (5)

where En is the pseudo energy defined in Eq. (3). Fig. 4 shows
four examples of the $Sn = Sn − S0 distribution, where the
reference potential S0 in each plot is set as the highest potential
point in the system. Note that the 11-dimensional phase space
is reduced to two dimensions and there is no distance metric
among the states in two-dimensional (2D) phase space. The
states in 2D are arranged for clarity, which reflect a kind of
dynamic relationship as in Fig. 3. One observes that, far from
the critical point (β = 0.01, Fig. 4(a)), the potential values are
high (around −4) and the landscape is flat. Near the critical
point but below it (β = 0.6, Fig. 4(b)), some local minima
(blue points) become more pronounced, but the landscape still
remains rather flat. We notice that these minimum points do
not correspond to the biological pathway. Just after the critical
point (β = 1.5, Fig. 4(c)), the system quickly condenses into a
landscape with deep valleys [17]. The state with the lowermost
potential value corresponds to the stationary G1 state. A linear
line of blue dots from upper-left to lower-middle corresponds to
the biological pathway, which forms a deep valley. Some deep-
blue dots out of the biological pathway are local attractors in
Ref. [3]. Notice that, although their potential values are low,
they attract only a few nearby initial states—all these points
are more or less isolated. After the critical point, the potential
landscape does not change qualitatively (see Fig. 4(d) with
β = 6). As β, α → ∞, the landscape becomes nine deep holes,
each corresponding to an attractor of the determinate system.

3. Conclusion

In conclusion, we introduced a stochastic model for the yeast
cell-cycle network. We found that there exists a transition-like

Noisy landscapes
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Fig. 2. The probability of the stationary G1 state. The order parameter πG1 as a function of β with (a) α = 2; (b) α = 5, and (c) α = 10. The solid line in (b) is the

fitting function ϕ(β) = 0.36
∣∣∣ β

1.03 − 1
∣∣∣
0.36

.

probabilities are very different among the states; some are so
small that, in realistic cases, they can never be observed.

Our interests are in the asymptotic behavior of the
dynamic system. The steady-state probability distribution Π =
(π0, π1, . . . ,π2047) can be found by solving linear equations
Π P = Π , where P is the transition matrix of the Markov chain.
The net probability flux from m to n is then πm pmn − πn pnm ,
where pmn is the transition probability from m to n. For a given
β, one can define a pseudo energy for the state n as [16]

En = − log πn

β
. (3)

We first study the property of the biological stationary state
G1 and define an “order parameter” as the probability for the
system to be in the G1 state, πG1. Plotted in Fig. 2 is the value of
the order parameter (πG1) as a function of the control parameter
β with different α. At large β (low “temperature” or small noise
level), the G1 state is the most probable state of the system and
πG1 has a significant value. Note that, for a finite α, there are
always “leaks” from the G1 state, so that the concept of attractor
in the deterministic model in Ref. [3] cannot be applied here.
πG1 decreases with a decrease in β; one observes a transition-
like behavior like the function of β (similar behavior has been
seen in [13]). In order to compare this transitional behavior to
the transition in the system of thermodynamic equilibrium, we
define

ϕ(β) = b
∣∣∣∣
β

βc
− 1

∣∣∣∣
a

, (4)

to fit the order parameter (πG1) curves in Fig. 2, where βc,
b, and a are parameters. When α is fixed to 5, we obtain
βc ≈ 1.03, b ≈ 0.36, and a ≈ 0.36 (see Fig. 2(b)).

At around βc = 1.03, πG1 drops to a very small value,
indicating a “high-temperature” phase in which the network

Fig. 3. The probability flux. For a node, only the largest flux from it is shown.
The nodes on the biological pathway are denoted with different colors: purple,
the stationary G1 state; blue, the other G1 states; olive-green, the S state;
dandelion, the G2 state; and red, the M states. All other states are denoted by
normal green. The simulations were performed with α = 5 and β = 6.

dynamics cannot converge to the biological steady state G1.
The system is, however, rather resistant to noise. The “transition
temperature” is quite high: the value of βc ≈ 1.03 implies
that the system will not be significantly affected by noise
until approximately 10% of the updating rules are wrong
(e−1.03/(e1.03 + e−1.03) ≈ 0.1).

We next study the statistical properties of the biological
pathway of the cell-cycle network. We search the probability
for the system to be in any of the biological states along the
biological pathway, as a function of β. One observes a similar
transition-like behavior as shown in Fig. 2. The jump of the
probability of the states along the biological pathway in the
low-temperature phase is due to the fact that, in this phase,
the probability flux among different states in the system is the
predominant flow along the biological pathway. To visualize
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G2

M
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indicators of cell fate. Because of the unknown etiology of
T-LGL leukemia (2), we used ‘‘Stimuli’’ as a node to indicate
antigen stimulation (12). This network contains 58 nodes and 123
edges. The biological description of the T-LGL survival signaling
network is given in SI Text.

Translating the T-LGL Survival Signaling Network into a Predictive,
Discrete, Dynamic Model. To understand the dynamics of signaling
abnormalities in T-LGL leukemia, we translated the T-LGL
survival signaling network into a Boolean model. Each network
node was described by one of two possible states: ON or OFF.
The ON state means the production of a small molecule, the
production and translation of a transcript, or the activation of a
protein/process whereas the OFF state means the absence of a
small molecule or transcript or the inhibition of a protein/
process. The regulation of each component in the network was
described by using the Boolean logical operators OR, AND, and
NOT (see Table S4). OR represents the combined effect of
independent upstream regulators on a downstream node
whereas AND indicates the conditional dependency of upstream
regulators to achieve a downstream effect. NOT represents the
effect of inhibitory regulators and can be combined with acti-
vating regulations by using either OR or AND. The rules were
derived from the regulatory relationships reflected in the net-
work and from the literature. The detailed justification of the
logical rules for all nodes in the network is provided in SI Text.
As in the biological system, there is a time lag between the state
change of the regulators and the state change of the targets. The
kinetics of signal propagation is rarely known from experiments.
Thus, we used an asynchronous updating algorithm (10, 11) that
samples differences in the speed of signal propagation. The
detailed algorithm is described in SI Text.

To reproduce how a population of cells responds to the same
signal and to simulate cell-to-cell variability, we performed
multiple simulations with the same initial conditions but differ-
ent updating orders (i.e., different timing). The model was
allowed to update for multiple rounds until the node Apoptosis
became ON in all simulations (recapitulating the death of all
CTL) or stabilized in the OFF state in a fraction of simulations
(recapitulating the stabilization of the long-term surviving CTL
population). The state of Stimuli was set to ON at the beginning
of every simulation, recapitulating the activation of CTL by
antigen. The states of the other nodes were set according to their

states in resting T cells, as described in the SI Text. At the end
of the simulation, if the state of a node stabilized at ON even
though it was OFF at the beginning of the simulation, we
consider it as constitutively active. If the state of a node
stabilized at OFF even though it was in the ON state at the
beginning of the simulation, or it was experimentally shown to
be active after normal CTL activation, we consider it as down-
regulated/inhibited. During simulations, the state of a node can
be fixed to reproduce signaling perturbations.

Constitutive Presence of IL-15 and PDGF Is Predicted to Be Sufficient
to Induce All of the Known Signaling Abnormalities in Leukemic T-LGL.
Zambello et al. (13) has demonstrated the presence of mem-
brane-bound IL-15 on leukemic LGL, suggesting a role of IL-15
in the pathogenesis of this disease. In the course of studying
constitutive cytokine production in LGL leukemia (14), we used
a protein array as an experimental method. Using this array, we
had found high levels of PDGF in LGL leukemia sera (unpub-
lished observation). PDGF exists in the form of homodimers or
heterodimers of two polypeptides: PDGF-A and PDGF-B (15).
In the current study, we examined the level of PDGF-BB level
in the sera of 22 T-LGL leukemia patients and 39 healthy donors
and found that PDGF-BB was significantly higher in patient
serum compared with normal (P ! 0.005) (Fig. 2A). We
subsequently incorporated this deregulation into the network
model.

To investigate signaling abnormalities underlying long-term
survival of leukemic T-LGL, we first tested whether our model
could reproduce the uncoupling of CTL activation and AICD by
using all known deregulations (summarized in Table S5). We did
not observe the activation of the node Apoptosis in any simu-
lation. Second, we probed whether all of the deregulations have
to be individually initiated or whether a subset of them can cause
the others. The effect of a single signaling perturbation can be
identified by keeping the state of the corresponding node
according to its deregulation and tracking the states of other
nodes until a stable (time-independent) state is obtained. IL-15,
PDGF, and Stimuli are three nodes that have been suggested to
be abnormal in T-LGL leukemia without known upstream
regulators in the T-LGL survival-signaling network. To recapit-
ulate the effect of their deregulations without masking the effect
of the perturbation tested, the states of IL-15, PDGF, and
Stimuli were randomly set at ON or OFF at every round of

Fig. 1. The T-LGL survival signaling network. Node and edge color represents the current knowledge of the signaling abnormalities in T-LGL leukemia.
Up-regulated or constitutively active nodes are in red, down-regulated or inhibited nodes are in green, nodes that have been suggested to be deregulated (either
up-regulation or down-regulation) are in blue, and the states of white nodes are unknown or unchanged compared with normal. Blue edge indicates activation
and red edge indicates inhibition. The shape of the nodes indicates the cellular location: rectangular indicates intracellular components, ellipse indicates
extracellular components, and diamond indicates receptors. Conceptual nodes (Stimuli, Cytoskeleton signaling, Proliferation, and Apoptosis) are labeled orange.
The full names of the node labels are provided in Table S3.

Zhang et al. PNAS ! October 21, 2008 ! vol. 105 ! no. 42 ! 16309

M
ED

IC
A

L
SC

IE
N

CE
S

Survival signaling in Large Granular Lymphocyte Leukemia

➡ Extensive literature search of 
Activation induced Cell Death in 
cytotoxic T lymphocytes

➡ All know deregulation of the process
➡ Boolean rules from literature

• Asynchronous update: a different way to 
model noise
• cell population response: 

➡ start from same initial state
➡ different random update order



Results, 1

indicators of cell fate. Because of the unknown etiology of
T-LGL leukemia (2), we used ‘‘Stimuli’’ as a node to indicate
antigen stimulation (12). This network contains 58 nodes and 123
edges. The biological description of the T-LGL survival signaling
network is given in SI Text.

Translating the T-LGL Survival Signaling Network into a Predictive,
Discrete, Dynamic Model. To understand the dynamics of signaling
abnormalities in T-LGL leukemia, we translated the T-LGL
survival signaling network into a Boolean model. Each network
node was described by one of two possible states: ON or OFF.
The ON state means the production of a small molecule, the
production and translation of a transcript, or the activation of a
protein/process whereas the OFF state means the absence of a
small molecule or transcript or the inhibition of a protein/
process. The regulation of each component in the network was
described by using the Boolean logical operators OR, AND, and
NOT (see Table S4). OR represents the combined effect of
independent upstream regulators on a downstream node
whereas AND indicates the conditional dependency of upstream
regulators to achieve a downstream effect. NOT represents the
effect of inhibitory regulators and can be combined with acti-
vating regulations by using either OR or AND. The rules were
derived from the regulatory relationships reflected in the net-
work and from the literature. The detailed justification of the
logical rules for all nodes in the network is provided in SI Text.
As in the biological system, there is a time lag between the state
change of the regulators and the state change of the targets. The
kinetics of signal propagation is rarely known from experiments.
Thus, we used an asynchronous updating algorithm (10, 11) that
samples differences in the speed of signal propagation. The
detailed algorithm is described in SI Text.

To reproduce how a population of cells responds to the same
signal and to simulate cell-to-cell variability, we performed
multiple simulations with the same initial conditions but differ-
ent updating orders (i.e., different timing). The model was
allowed to update for multiple rounds until the node Apoptosis
became ON in all simulations (recapitulating the death of all
CTL) or stabilized in the OFF state in a fraction of simulations
(recapitulating the stabilization of the long-term surviving CTL
population). The state of Stimuli was set to ON at the beginning
of every simulation, recapitulating the activation of CTL by
antigen. The states of the other nodes were set according to their

states in resting T cells, as described in the SI Text. At the end
of the simulation, if the state of a node stabilized at ON even
though it was OFF at the beginning of the simulation, we
consider it as constitutively active. If the state of a node
stabilized at OFF even though it was in the ON state at the
beginning of the simulation, or it was experimentally shown to
be active after normal CTL activation, we consider it as down-
regulated/inhibited. During simulations, the state of a node can
be fixed to reproduce signaling perturbations.

Constitutive Presence of IL-15 and PDGF Is Predicted to Be Sufficient
to Induce All of the Known Signaling Abnormalities in Leukemic T-LGL.
Zambello et al. (13) has demonstrated the presence of mem-
brane-bound IL-15 on leukemic LGL, suggesting a role of IL-15
in the pathogenesis of this disease. In the course of studying
constitutive cytokine production in LGL leukemia (14), we used
a protein array as an experimental method. Using this array, we
had found high levels of PDGF in LGL leukemia sera (unpub-
lished observation). PDGF exists in the form of homodimers or
heterodimers of two polypeptides: PDGF-A and PDGF-B (15).
In the current study, we examined the level of PDGF-BB level
in the sera of 22 T-LGL leukemia patients and 39 healthy donors
and found that PDGF-BB was significantly higher in patient
serum compared with normal (P ! 0.005) (Fig. 2A). We
subsequently incorporated this deregulation into the network
model.

To investigate signaling abnormalities underlying long-term
survival of leukemic T-LGL, we first tested whether our model
could reproduce the uncoupling of CTL activation and AICD by
using all known deregulations (summarized in Table S5). We did
not observe the activation of the node Apoptosis in any simu-
lation. Second, we probed whether all of the deregulations have
to be individually initiated or whether a subset of them can cause
the others. The effect of a single signaling perturbation can be
identified by keeping the state of the corresponding node
according to its deregulation and tracking the states of other
nodes until a stable (time-independent) state is obtained. IL-15,
PDGF, and Stimuli are three nodes that have been suggested to
be abnormal in T-LGL leukemia without known upstream
regulators in the T-LGL survival-signaling network. To recapit-
ulate the effect of their deregulations without masking the effect
of the perturbation tested, the states of IL-15, PDGF, and
Stimuli were randomly set at ON or OFF at every round of

Fig. 1. The T-LGL survival signaling network. Node and edge color represents the current knowledge of the signaling abnormalities in T-LGL leukemia.
Up-regulated or constitutively active nodes are in red, down-regulated or inhibited nodes are in green, nodes that have been suggested to be deregulated (either
up-regulation or down-regulation) are in blue, and the states of white nodes are unknown or unchanged compared with normal. Blue edge indicates activation
and red edge indicates inhibition. The shape of the nodes indicates the cellular location: rectangular indicates intracellular components, ellipse indicates
extracellular components, and diamond indicates receptors. Conceptual nodes (Stimuli, Cytoskeleton signaling, Proliferation, and Apoptosis) are labeled orange.
The full names of the node labels are provided in Table S3.
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Results, 2

indicators of cell fate. Because of the unknown etiology of
T-LGL leukemia (2), we used ‘‘Stimuli’’ as a node to indicate
antigen stimulation (12). This network contains 58 nodes and 123
edges. The biological description of the T-LGL survival signaling
network is given in SI Text.

Translating the T-LGL Survival Signaling Network into a Predictive,
Discrete, Dynamic Model. To understand the dynamics of signaling
abnormalities in T-LGL leukemia, we translated the T-LGL
survival signaling network into a Boolean model. Each network
node was described by one of two possible states: ON or OFF.
The ON state means the production of a small molecule, the
production and translation of a transcript, or the activation of a
protein/process whereas the OFF state means the absence of a
small molecule or transcript or the inhibition of a protein/
process. The regulation of each component in the network was
described by using the Boolean logical operators OR, AND, and
NOT (see Table S4). OR represents the combined effect of
independent upstream regulators on a downstream node
whereas AND indicates the conditional dependency of upstream
regulators to achieve a downstream effect. NOT represents the
effect of inhibitory regulators and can be combined with acti-
vating regulations by using either OR or AND. The rules were
derived from the regulatory relationships reflected in the net-
work and from the literature. The detailed justification of the
logical rules for all nodes in the network is provided in SI Text.
As in the biological system, there is a time lag between the state
change of the regulators and the state change of the targets. The
kinetics of signal propagation is rarely known from experiments.
Thus, we used an asynchronous updating algorithm (10, 11) that
samples differences in the speed of signal propagation. The
detailed algorithm is described in SI Text.

To reproduce how a population of cells responds to the same
signal and to simulate cell-to-cell variability, we performed
multiple simulations with the same initial conditions but differ-
ent updating orders (i.e., different timing). The model was
allowed to update for multiple rounds until the node Apoptosis
became ON in all simulations (recapitulating the death of all
CTL) or stabilized in the OFF state in a fraction of simulations
(recapitulating the stabilization of the long-term surviving CTL
population). The state of Stimuli was set to ON at the beginning
of every simulation, recapitulating the activation of CTL by
antigen. The states of the other nodes were set according to their

states in resting T cells, as described in the SI Text. At the end
of the simulation, if the state of a node stabilized at ON even
though it was OFF at the beginning of the simulation, we
consider it as constitutively active. If the state of a node
stabilized at OFF even though it was in the ON state at the
beginning of the simulation, or it was experimentally shown to
be active after normal CTL activation, we consider it as down-
regulated/inhibited. During simulations, the state of a node can
be fixed to reproduce signaling perturbations.

Constitutive Presence of IL-15 and PDGF Is Predicted to Be Sufficient
to Induce All of the Known Signaling Abnormalities in Leukemic T-LGL.
Zambello et al. (13) has demonstrated the presence of mem-
brane-bound IL-15 on leukemic LGL, suggesting a role of IL-15
in the pathogenesis of this disease. In the course of studying
constitutive cytokine production in LGL leukemia (14), we used
a protein array as an experimental method. Using this array, we
had found high levels of PDGF in LGL leukemia sera (unpub-
lished observation). PDGF exists in the form of homodimers or
heterodimers of two polypeptides: PDGF-A and PDGF-B (15).
In the current study, we examined the level of PDGF-BB level
in the sera of 22 T-LGL leukemia patients and 39 healthy donors
and found that PDGF-BB was significantly higher in patient
serum compared with normal (P ! 0.005) (Fig. 2A). We
subsequently incorporated this deregulation into the network
model.

To investigate signaling abnormalities underlying long-term
survival of leukemic T-LGL, we first tested whether our model
could reproduce the uncoupling of CTL activation and AICD by
using all known deregulations (summarized in Table S5). We did
not observe the activation of the node Apoptosis in any simu-
lation. Second, we probed whether all of the deregulations have
to be individually initiated or whether a subset of them can cause
the others. The effect of a single signaling perturbation can be
identified by keeping the state of the corresponding node
according to its deregulation and tracking the states of other
nodes until a stable (time-independent) state is obtained. IL-15,
PDGF, and Stimuli are three nodes that have been suggested to
be abnormal in T-LGL leukemia without known upstream
regulators in the T-LGL survival-signaling network. To recapit-
ulate the effect of their deregulations without masking the effect
of the perturbation tested, the states of IL-15, PDGF, and
Stimuli were randomly set at ON or OFF at every round of

Fig. 1. The T-LGL survival signaling network. Node and edge color represents the current knowledge of the signaling abnormalities in T-LGL leukemia.
Up-regulated or constitutively active nodes are in red, down-regulated or inhibited nodes are in green, nodes that have been suggested to be deregulated (either
up-regulation or down-regulation) are in blue, and the states of white nodes are unknown or unchanged compared with normal. Blue edge indicates activation
and red edge indicates inhibition. The shape of the nodes indicates the cellular location: rectangular indicates intracellular components, ellipse indicates
extracellular components, and diamond indicates receptors. Conceptual nodes (Stimuli, Cytoskeleton signaling, Proliferation, and Apoptosis) are labeled orange.
The full names of the node labels are provided in Table S3.
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• Key mediators of activation and AICD decoupling: NFKB 
and SPHK1 (Sphingosine Kinase 1)
• SPHK1 inhibition OR NFkB inhibiton makes T-LGL 

Peripheral Blood Mononuclear cells apoptotic, (normal 
ones do not mind!)



Results, 3

indicators of cell fate. Because of the unknown etiology of
T-LGL leukemia (2), we used ‘‘Stimuli’’ as a node to indicate
antigen stimulation (12). This network contains 58 nodes and 123
edges. The biological description of the T-LGL survival signaling
network is given in SI Text.

Translating the T-LGL Survival Signaling Network into a Predictive,
Discrete, Dynamic Model. To understand the dynamics of signaling
abnormalities in T-LGL leukemia, we translated the T-LGL
survival signaling network into a Boolean model. Each network
node was described by one of two possible states: ON or OFF.
The ON state means the production of a small molecule, the
production and translation of a transcript, or the activation of a
protein/process whereas the OFF state means the absence of a
small molecule or transcript or the inhibition of a protein/
process. The regulation of each component in the network was
described by using the Boolean logical operators OR, AND, and
NOT (see Table S4). OR represents the combined effect of
independent upstream regulators on a downstream node
whereas AND indicates the conditional dependency of upstream
regulators to achieve a downstream effect. NOT represents the
effect of inhibitory regulators and can be combined with acti-
vating regulations by using either OR or AND. The rules were
derived from the regulatory relationships reflected in the net-
work and from the literature. The detailed justification of the
logical rules for all nodes in the network is provided in SI Text.
As in the biological system, there is a time lag between the state
change of the regulators and the state change of the targets. The
kinetics of signal propagation is rarely known from experiments.
Thus, we used an asynchronous updating algorithm (10, 11) that
samples differences in the speed of signal propagation. The
detailed algorithm is described in SI Text.

To reproduce how a population of cells responds to the same
signal and to simulate cell-to-cell variability, we performed
multiple simulations with the same initial conditions but differ-
ent updating orders (i.e., different timing). The model was
allowed to update for multiple rounds until the node Apoptosis
became ON in all simulations (recapitulating the death of all
CTL) or stabilized in the OFF state in a fraction of simulations
(recapitulating the stabilization of the long-term surviving CTL
population). The state of Stimuli was set to ON at the beginning
of every simulation, recapitulating the activation of CTL by
antigen. The states of the other nodes were set according to their

states in resting T cells, as described in the SI Text. At the end
of the simulation, if the state of a node stabilized at ON even
though it was OFF at the beginning of the simulation, we
consider it as constitutively active. If the state of a node
stabilized at OFF even though it was in the ON state at the
beginning of the simulation, or it was experimentally shown to
be active after normal CTL activation, we consider it as down-
regulated/inhibited. During simulations, the state of a node can
be fixed to reproduce signaling perturbations.

Constitutive Presence of IL-15 and PDGF Is Predicted to Be Sufficient
to Induce All of the Known Signaling Abnormalities in Leukemic T-LGL.
Zambello et al. (13) has demonstrated the presence of mem-
brane-bound IL-15 on leukemic LGL, suggesting a role of IL-15
in the pathogenesis of this disease. In the course of studying
constitutive cytokine production in LGL leukemia (14), we used
a protein array as an experimental method. Using this array, we
had found high levels of PDGF in LGL leukemia sera (unpub-
lished observation). PDGF exists in the form of homodimers or
heterodimers of two polypeptides: PDGF-A and PDGF-B (15).
In the current study, we examined the level of PDGF-BB level
in the sera of 22 T-LGL leukemia patients and 39 healthy donors
and found that PDGF-BB was significantly higher in patient
serum compared with normal (P ! 0.005) (Fig. 2A). We
subsequently incorporated this deregulation into the network
model.

To investigate signaling abnormalities underlying long-term
survival of leukemic T-LGL, we first tested whether our model
could reproduce the uncoupling of CTL activation and AICD by
using all known deregulations (summarized in Table S5). We did
not observe the activation of the node Apoptosis in any simu-
lation. Second, we probed whether all of the deregulations have
to be individually initiated or whether a subset of them can cause
the others. The effect of a single signaling perturbation can be
identified by keeping the state of the corresponding node
according to its deregulation and tracking the states of other
nodes until a stable (time-independent) state is obtained. IL-15,
PDGF, and Stimuli are three nodes that have been suggested to
be abnormal in T-LGL leukemia without known upstream
regulators in the T-LGL survival-signaling network. To recapit-
ulate the effect of their deregulations without masking the effect
of the perturbation tested, the states of IL-15, PDGF, and
Stimuli were randomly set at ON or OFF at every round of

Fig. 1. The T-LGL survival signaling network. Node and edge color represents the current knowledge of the signaling abnormalities in T-LGL leukemia.
Up-regulated or constitutively active nodes are in red, down-regulated or inhibited nodes are in green, nodes that have been suggested to be deregulated (either
up-regulation or down-regulation) are in blue, and the states of white nodes are unknown or unchanged compared with normal. Blue edge indicates activation
and red edge indicates inhibition. The shape of the nodes indicates the cellular location: rectangular indicates intracellular components, ellipse indicates
extracellular components, and diamond indicates receptors. Conceptual nodes (Stimuli, Cytoskeleton signaling, Proliferation, and Apoptosis) are labeled orange.
The full names of the node labels are provided in Table S3.
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• TBET is predicted to be constitutively active in T-LGL
• TBET levels Peripheral Blood Mononuclear cells is 3.3 

fold higher than normal PBMCs
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