5. Regulatory Models that Mimic Phenotype and Dynamics, Part I

> Warning: Statistical Physics. It only works on average.

http://regan.med.edu/CVRB-course.php

Multi-stable circuits

Modeling

- → differential equations
- → <u>Gillespie stochastic dynamics</u>
- Thermodynamic models of binding and transcription
 - ➡ concentration dependence
 - ➡ precise dynamics of switching
- Boolean dynamics
 - ➡ logic gates
 - ➡ discrete time
 - ➡ captures broad-scale features

The simplest "developmental" type circuit
Bistable

Boolean networks

Kauffman, S, Homeostasis and differentiation in random genetic control networks Nature 224, pp 177, 1969

Random network
State of the system, or gene activity profile: (0,1,1,0,0,1,1,1,0,...,0)
Random Boolean rules
p - prob. output value 1

(NOT A) OR B

- State changes in time: trajectory in nD space
- Structure of state space determines all possible dynamics

Random Boolean networks have an ordered regime

- Only a small fraction of all cell states are stable
 The system does not visit all
- The system does not visit all possible states
- Attractors:
 - Fixed points: a state in which all Boolean rules are satisfied
 - Limit cycles: a finite number of states through which the system cycles
- Attractor basins

C high-dimensional system as "attractor landscape (schematic)

Physicists love this. Biology... not so much "Random" is not a good interdisciplinary word.

Reka Albert & Hans G. Othmer

Drosophila segment polarity network

Boolean rules and topology are suf

- The network topology was know, most Boolean rules could be inferred from literature
- Small enough system for exact enumeration!

	Start state			Stable state		
wg			1 B			
wG en						
EN hh		-				
HH ntc						
PTC PTC						
SMO						
CI CI			1.5			
CIA CIR						
		Siemes State				

(i) the

- tors is never additive, but rather, inhibitors are dominant;
- (ii) transcription and translation are ON/OFF functions of the state;
- (iii) if transcription/translation is ON, mRNAs/ proteins are synthesized in one time step;
- (iv) mRNAs decay in one time step if not transcribed;
- (v) transcription factors and proteins undergoing posttranslational modification decay in one time step if their mRNA is not present.

No wg, en and hh stripes, no segmentation, regardless of initial state.

The yeast cell cycle

- The network topology is know
- NO Boolean rules, just activator/inhibitor relationships

$$S_{i}(t+1) = \begin{cases} 1, & \sum_{j} a_{ij} S_{j}(t) > 0 \\ 0, & \sum_{j} a_{ij} S_{j}(t) < 0 \\ S_{i}(t), & \sum_{j} a_{ij} S_{j}(t) = 0 \end{cases}$$

Robust in more than one way

Dynamics under perturbation
 start dynamics from START
 superimpose time-course for perturbed networks
 34 arrow deletions (41%)
 174 arrow additions (57%)
 29 activator/inhibitor switch (68%)

Similar stable fixed point with
 different dynamical rules
 using other checkpoints

A Mammalian Example

Survival signaling in Large Granular Lymphocyte Leukemia

- Extensive literature search of Activation induced Cell Death in cytotoxic T lymphocytes
- All know deregulation of the process
- Boolean rules from literature

- Asynchronous update: a different way to model noise
 - cell population response:
 - → start from same initial state
 - ➡ different random update order

- Constitutive presence of IL15 AND PDGF reproduces all deregulation of apoptosis
 - experiment: increased PDFG in T-LGL sera
 - PDGF receptor inhibition makes T-LGL Peripheral Blood Mononuclear cells apoptotic, (normal ones do not mind!)

- Key mediators of activation and AICD decoupling: NFKB and SPHK1 (Sphingosine Kinase 1)
 - SPHK1 inhibition OR NFkB inhibiton makes T-LGL Peripheral Blood Mononuclear cells apoptotic, (normal ones do not mind!)

TBET is predicted to be constitutively active in T-LGL
 TBET levels Peripheral Blood Mononuclear cells is 3.3 fold higher than normal PBMCs

6. Regulatory Models that Mimic Phenotype and Dynamics, Part II

- Cycles and their stability -

June 8 12 PM