The complexity of cellular networks

Warning: Statistical physics. It only works on average.

http://regan.med.harvard.edu/CVBR-course.php

2. Dynamics on Complex Networks - What do networks do? -They CONNECT their nodes. WHY? 0 Communication Traffic Spreading processes

- Robustness and Vulnerability -

Albert & Barabási, 2000 : the Achilles Heel of the Internet

- Statistical physics loves these models! -

random failure scenarios map to percolation problems

- assortative networks
 - more resilient to random failure
 - more vulnerable to attack

- Cascading failures -

- Cascading failures -

Reason: when a node fails, it stops doing its share. Neighbours become overworked.

Motter and Lai, 2002:

load bearing capacity ~ betweenness
every pair of nodes exchanges 1 packet / timestep

Importance of largest betweennes nodes!

003/45/7844

ISAT GeoStar 45 23:15 EST 14 Aug. 2003

- A surprising quick-fix -

Motter, 2004:

REMOVE / DISCONNECT nodes that carry small amounts of load:

- then generate more load than they carry
- their paths to the system are large -> burden many intermediary nodes

- Predicted to work in E.coli's TCA cycle! -

- Congestion -

Ohira and Sawatari, 1998:

- 2D lattice
- packets (cars) start at boundary
- nodes have unlimited queue (no cascades)
- shortest route
- probabilistic routing

Optimal amount of randomness in choosing alternate, longer routes

- Physicists love these models! -

Influence of network topology:
 Zhao et al, 2005: random & scale-free networks are less congested than lattices IF processing capacity ~ degree
 SAME congestion threshold on all networks if

processing capacity ~ betweenness

Toroczkai and Bassler, 2004: gradient aware flow.

Congestion factor (% of nodes with no incoming trafic) grows with system size in random networks
 it is constant in scale-free networks -> scalable!

• The "Shannon limit" of networks:

Sreenivasan and Toroczkai, 2007: for every physical network there exists a <u>communication threshold</u> that is entirely structural. No routing protocol can do better.

- Spreading Processes -

- Would you like it more realistic? -

Effects of systematic antiviral treatment

Buys time for mass vaccinations

- More topics you can read up on -

- Pick your favourite model in classical statistical mechanics
- Synchronization phenomena
- Walking and searching on networks
- Social networks
 - rumor and news spreading phenomena
 - voter models, coalition formation
 - economic models on networks

Slides and organized citations: on line by evening of lecture.

3. Modeling transcriptional regulation, one promoter at a time

April 27 12 PM