/. Transcriptional regulation
from microarray data

Warning: Statistical physics.
It only works on average.

http://regan.med.harvard.edu/CVBR-course.php




How about the entire genetic
regulatory network?
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®* TRANSFAC, TRANSPATH
® INGENUVITY
® InterAct

®* Public databases: 10-100 thousands




If we know enough interactions:

* Inflamation and immunity genes
®* Known interactions (IPA)

® Up- or down-regulation in blood
leukocytes during endotoxin
administration




An overview of approaches

Co-expression Boolean
networks networks

Bayesian

ODEs and networks
regression

* Known literature

® Transcription factors

* Binding site information

® Perturbation experimental design




How far does correlation take us?

* Hypothesis: co-expression means
®* common upstream regulator
* shared function
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Sounds nice! How does clustering go?

® Data preparation & | A\ capture functionally related gene groups

normalization

* A distance metric: what

does “similar” mean? o Moot L ® eyl Devlopment
® Pearson correlation g
® Euklidean distance
®* Mutual Information

No consensus on which one
is better (no metric for
“better”)

® Non-hierarchical
®* K-means
* SOM
* PCA

® Fuzzy clustering

Rat, Krox-24 BE |-~




Coherent groups of genes &
experiments
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Ideally, all combinations of genes &
experiments should be tested

® Iterative Signature Algorithm
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Regulators with
best predicting
power
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Does correlated behavior translate to
direct regulation?

* Mutual Information
®* non-linear measure of correlated behavior

p(z,y)
pi(x)pa(y) )

* ARACN
mEECE o T

®* Mutual Information

* Data processing inequality




» | - A= Relevance Networks

¢ | © Bayesian Network |
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How
microarray
data?
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precision

CLR - Context Likelihood of
Relatedness

z, = f(cdf(MI1)) z, = sqri(z? + z?)

Gene |
z, = f(cdf(MI))
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Co-expression Is stongest between co-
regulated genes!

ITGA?
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Reasons behind the ftrouble

® ARACNeE ® Fails for combinatortal
1 Lnput/ genel regulation

cofactor

S

_qs

Is direct regulatory

information contained in
MA data?




Boolean network approaches

Boolean function

State of the system, or gene activity for X
profile:  (0,1,1,0,0,1,1,1,0,...,0) x
State changes in time: trajectory in
nD space

Structure of state space determines
all possible dynamics

Only a small fraction of all cell
states are stable
The system does not visit all
possible states
Attractors:

e =ints: a state in which

All genes <{- all ~ are satisfied
possible Kk inputs need to be )i
which the

tested

~viractor basins




Finding expression dependencies

® Bayesian networks
Directed Acyclic Graph
Its structure describes the
conditional probabilities that
best fit the data
Discrete or continuous
Extremely time-consuming on
large networks

1: Maximum R 2: Flnad relevant
Lnputs / gene part of gene space




NIR - Network identification by
Multiple regression

O lterative approximation
o O approximation:
o calculate P,
o foreach gene
0O usen € (R M)
equations where p; < p,
0 solve
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Summer break!

Next lecture:

Sep 14
12 PM




