6. Regulatory Models that Mimic Phenotype and Dynamics, Part II

> Warning: Statistical Physics. It only works on average.

http://regan.med.edu/CVRB-course.php

## Rhythm and its robustness



#### • Limit cycle attractors

- ➡ no single steady state
- potentially sensitive to fluctuating time delays

Are cyclic attractors artifacts of synchronous update?

#### Noise in synchronous update

continuous time
 low-pass filter on node switching
 the "command" from the gate driving a node has to stay consistent for a time s < 1</li>

#### • Reliable attractor:

- small random time delay on nodes: ε << s</p>
- all possible perturbations in time delay lead to the same attractor

#### In random Boolean networks...



Not so many stable attractors!
They have larger basins of attraction



 They tend to have longer cycles!

# What type of wiring makes a non-reliable attractor?

- Extreme modularity (causally disconnected network components)
- More than one cascade of switching events!





## Juggling is unstable

- More than one cascade of switching events!
- Causal cascades can accumulate phase shift
   and loose synchrony





## Back to biology: cell cycle revisited



- Same model of yeast CC
- Same update gates
- Noise in signal propagation time
  - ⇒continuous time
  - ⇒low-pass filter for switching
- Cycle: state S1 triggers Cln3 activation

Completely stable for small noise!

Buffer steps with change in just 1 node!

## Does the cell cycle juggle?

Stronger noise
allow delays past 1/2 the propagation time unit
Looser stability measure
G1 is regularly assumed for a time period long enough to trigger CC restart



Time t/[s]

The system stays within the same attractor!

 Although attractor switch is possible

## Is reliability evolvable?

 Random threshold networks
 map attractor landscape
 record stable and unstable attractors
 fitness score

 Evolutionary dynamics
 rewire 1 link
 measure new fitness
 if higher than original, keep new network

A) Full attractor landscape <u>sum of stable basin</u> <u>sizes</u>

B) Functional attractor <u>largest stable</u> <u>attractor basin size</u>

# Evolving a stable landscape is easy!



How about one "functional" attractor basin?
evolution stops when half of the configuration space belongs to the stable, functional attractor



Larger <k> is better!

# An example



#### Does function dictate structure?

- Let's find ALL small networks that could perform the segment polarity patterning in Drosophila
   how many of these are robust?
   Enumerated all possible 3node networks
  - each can regulate itself
     and others
     each link can be inter-
    - and extracellular
       restrict to 2 of 3
      - → 14,348,907 topologies



## Does function dictate structure?

A network is functional if:
 has perform correct patterning
 robustness: fraction of parameter space that can perform the function
 (ODE's), parameters sampled at random



Biological topology: high score, not highest.

Excluding direct autoregulation on E and S





# Actually, 2 nodes are enough for patterning...





(0.429, 6)

Positive feedback on E and W

> E and W neighbors express W/nothing OR E/ nothing! Bistable in E and W

4 core topologies: black links are required for robust patterning

Green: neutral
Orange: bad
red: very bad

(0.286, 1)

Mutual intracellular E - W inhibition Sharp boundary: E

next to W only

# 7. Transcriptional Regulation from Microarray Data

June 22 12 PM