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Rhythm and its robustness
• Limit cycle attractors
➡ no single steady state 
➡ potentially sensitive to fluctuating 

time delays

Are cyclic attractors 
artifacts of 

synchronous update?

• Noise in synchronous update
➡ continuous time
➡ low-pass filter on node switching
➡ the “command” from the gate 

driving a node has to stay 
consistent for a time s < 1

• Reliable attractor:
➡ small random time 

delay on nodes: ε << s
➡ all possible 

perturbations in time 
delay lead to the same 
attractor



For this purpose, we replace the discrete update times by a
continuous time variable t where nodes may update at any
point in time. Our goal is to slightly desynchronize the dy-
namics of the network by shifting the individual updates of
nodes to earlier or later time points. To prevent this from
generating spurious spikes during transitional phases !e.g.,
when several signals interact that used to be simultaneous,
but now arrive at different times", nodes have to be pre-
vented from switching on a time scale s much shorter than
the original integer update time step !i.e., s!1". This is
implemented by a low-pass filter that averages out fluctua-
tions on short characteristic times scales s, namely by aver-
aging over the input signal according to

xi!t + 1" = "#!2s"−1$
t−s

t+s

f i„xa!i"!t", xb!i"!t"…dt − 1/2% ,

!2"

where " is the step function with "!h"=1 for h#0 and
"!h"=0 otherwise. Let us briefly check how this works.
Imagine node a!i" switches on at time t, node b!i" switches
off at time t+$, while f i is the function AND. Without a
low-pass filter !s=0", node i switches on at time t+1 and off
again at time t+1+$. For s%$, the spurious spike is filtered
out, i.e., node i remains constant. In the limit of fast switch-
ing time scale s→0, Eq. !2" converges towards Eq. !1". In
particular, all synchronous solutions of Eq. !1", i.e., solutions
with nodes switching precisely at integer values of t, are
solutions of Eq. !2" for arbitrary s&1/2, as well.

In order to check the stability of a network against small
fluctuations in the timing of the switching events, we perturb
the system at some time T by temporarily retarding a fraction
of the switching events. Thereby, a subset of nodes that
would normally change state at time T is kept frozen in their
present state during the time interval &T ,T+$' with $&s.
After t=T+$, we let the system evolve as usual according to
Eq. !2". The original and the perturbed solutions differ only
on time intervals &t , t+$' for integer t. In general, the pertur-
bation may propagate, i.e., for each integer t#T some units
flip at time t while others flip at time t+$ in the perturbed
solution. If, however, there is a later integer time t*%T such
that either !I" no flips occur at time t*+$ or !II" no flips
happen at time t*, the perturbation has healed out and the
system has regained synchrony. Then, at times t# t*, the per-
turbed and the original solutions are either identical &case !I"'
or identical up to a global phase shift $ &case !II"'. We call an
attractor stable if for all possible perturbations of the above
type !i.e., for all possible permutations of perturbed and non-
perturbed nodes" the system regains synchrony and the origi-
nal attractor is stabilized within a finite time interval. Other-
wise the attractor is called unstable. This stability criterion is
robust under variation of the perturbation scheme, including
the case of different time lags $i for different nodes i. In
real-world situations, ongoing perturbations may cause accu-
mulating phase shifts in the unstable case. This eventually
leads to a change in time ordering of the switching events,
which may shift the system into a different attractor. With
this we choose here a particularly simple criterion for the
stability of an attractor in a discrete dynamical network in

the presence of noise. The system is on a stable attractor if
after each small perturbation it reaches the attractor again.
On unstable attractors, such time lags do not relax. This sce-
nario is better suited as a stability criterion than stochasti-
cally adding or removing switching events &12,13', which
does not allow for the limit of infinitesimally weak perturba-
tions. Furthermore, the low-pass filter characteristics used
here are well motivated by the dynamics of biochemical
switches &14' where molecule concentrations typically re-
spond slowly, leading to overall low-pass filter characteris-
tics of the switch. This natural property of genes is a simple
means of stabilization which is of low cost and ubiquitous in
nature.

Applying our stability criterion to random Boolean net-
works at criticality, one observes that the average number of
all attractors, stable and unstable ones, grows much faster
than the average number of stable attractors alone &see Fig.
1!a"'. In large networks, almost all attractors are expected to
be unstable. Interestingly, the probability to reach a stable

FIG. 1. Frequency and accessibility of stable and unstable
cycles in Kauffman networks. !a" Average number of stable !!" and
unstable !"" attractors as a function of the number of nodes in the
network. !b" Fraction of initial conditions leading to a stable attrac-
tor !solid line" and the ratio between numbers of stable and all
attractors !dashed line". Data points in !a" are averages over R in-
dependent realizations of the Kauffman network, R=107 for N
&24, R=106 for 24'N'31, and R=104 otherwise. For increasing
computational speed the networks are subject to the decimation
procedure &6' before simulation. For the decimated network we
fully enumerate the state space such that it is certain that all cycles
are detected. Sizes of basins of attraction in !b" have been estimated
in 105 networks, testing 100 randomly chosen initial conditions in
each original network !no decimation applied".
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In random Boolean networks...
• Not so many stable 

attractors!
• They have larger basins 

of attraction

• They tend to have 
longer cycles! 

attractor from a random initial condition is much larger than
the fraction of stable attractors, as shown in Fig. 1!b". Thus,
unstable attractors typically have significantly smaller basins
of attraction than stable attractors. The main result is that,
with system size N, the number of stable attractors grows
sublinearly as #N! with !$0.5, as shown in Fig. 2 in the
numerically feasible range of N"40. A least-squares fit of
the form c+bN! fits best !%#2&=0.000 13" with the parameter
values !=0.448, c=1.107, and b=0.108 !with a correlation
coefficient for this fit of r=0.999 742". The number of stable
attractors varies broadly around the mean value, e.g., for N
=30, where we observe a mean value of 1.6, the fraction of
realizations with more than k stable attractors is 0.009 for
k=5 and 8.7$10−4 for k=9. The Poisson distribution with
the same mean has P!%5"$0.006 and P!%9"$7$10−6.

Let us further analyze the number l of states contained in
the attractors. While stable attractors are shorter on average

than unstable attractors, the distribution of attractor lengths is
broader for stable than for unstable attractors, as shown in
Fig. 3. The majority of long attractors with lengths far above
average are stable.

Can we understand by a simple picture how unstable at-
tractors differ from stable ones? Most obviously, unstable
attractors occur when the network falls into two or more
noninteracting clusters. When all updates in one of the clus-
ters are delayed by the time &, this phase lag with respect to
all other clusters cannot heal. All attractors with flipping
events in more than one network cluster are unstable. How-
ever, also in networks consisting of a single cluster unstable
attractors are found. Figure 4 illustrates the coexistence of a
stable and an unstable attractor in a small connected net-
work. The example suggests that an attractor is stable if there
is a single cascade of switching events. Let us consider the
minimal number of simultaneous flipping events

m = min
t

'(i'xi!t" ! xi!t + 1")' !3"

for a given attractor. The attractors with m=0 are the fixed
points. These are stable by definition because no flipping
events are to be retarded. Attractors with m=1 are stable as
well. These attractors contain a step with only a single flip-

FIG. 2. !Color online" System size scaling of the number of
stable attractors plotted as a function of the rescaled number of
nodes !N /5"! with !=0.3,0.5,0.7 !left to right". Error bars in !b"
indicate standard deviation divided by *R with ensemble size R !cf.
Fig. 1".

FIG. 3. Statistics of attractor lengths for networks with N=10
!thin curves" and N=30 !thick curves". The cumulative distribution
is shown for stable attractors !solid lines" and unstable attractors
!dashed lines". For N=10 nodes the average length of stable attrac-
tors is %l&nat=2.59; of unstable attractors %l&art=3.56; for N=30 we
find %l&nat=5.50 and %l&art=7.16.

FIG. 4. !Color online" A stable and an unstable attractor in the
same system. !a" Three nodes forming a feedback loop. Each node
i performs the Boolean function negation on the input from its
predecessor j, i.e., xi!t+1"=1−xj!t". !b" Temporal evolution of a
stable attractor. There is a unique causal chain of flipping events
!thick arrows". A retarded update !shaded box" retards all subse-
quent events by the same amount of time. Thus, perturbations heal
immediately. !c" An unstable attractor consisting of three indepen-
dent chains of flipping events propagating along the cycle of nodes.
One of these chains is indicated by thick arrows. Retarding an event
affects subsequent events in the same causal chain only. Causal
chains remain phase shifted. The system does not regain synchrony
after a perturbation.
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What type of wiring makes a 
non-reliable attractor?

• Extreme modularity 
(causally disconnected 
network components)

attractor from a random initial condition is much larger than
the fraction of stable attractors, as shown in Fig. 1!b". Thus,
unstable attractors typically have significantly smaller basins
of attraction than stable attractors. The main result is that,
with system size N, the number of stable attractors grows
sublinearly as #N! with !$0.5, as shown in Fig. 2 in the
numerically feasible range of N"40. A least-squares fit of
the form c+bN! fits best !%#2&=0.000 13" with the parameter
values !=0.448, c=1.107, and b=0.108 !with a correlation
coefficient for this fit of r=0.999 742". The number of stable
attractors varies broadly around the mean value, e.g., for N
=30, where we observe a mean value of 1.6, the fraction of
realizations with more than k stable attractors is 0.009 for
k=5 and 8.7$10−4 for k=9. The Poisson distribution with
the same mean has P!%5"$0.006 and P!%9"$7$10−6.

Let us further analyze the number l of states contained in
the attractors. While stable attractors are shorter on average

than unstable attractors, the distribution of attractor lengths is
broader for stable than for unstable attractors, as shown in
Fig. 3. The majority of long attractors with lengths far above
average are stable.

Can we understand by a simple picture how unstable at-
tractors differ from stable ones? Most obviously, unstable
attractors occur when the network falls into two or more
noninteracting clusters. When all updates in one of the clus-
ters are delayed by the time &, this phase lag with respect to
all other clusters cannot heal. All attractors with flipping
events in more than one network cluster are unstable. How-
ever, also in networks consisting of a single cluster unstable
attractors are found. Figure 4 illustrates the coexistence of a
stable and an unstable attractor in a small connected net-
work. The example suggests that an attractor is stable if there
is a single cascade of switching events. Let us consider the
minimal number of simultaneous flipping events

m = min
t

'(i'xi!t" ! xi!t + 1")' !3"

for a given attractor. The attractors with m=0 are the fixed
points. These are stable by definition because no flipping
events are to be retarded. Attractors with m=1 are stable as
well. These attractors contain a step with only a single flip-

FIG. 2. !Color online" System size scaling of the number of
stable attractors plotted as a function of the rescaled number of
nodes !N /5"! with !=0.3,0.5,0.7 !left to right". Error bars in !b"
indicate standard deviation divided by *R with ensemble size R !cf.
Fig. 1".

FIG. 3. Statistics of attractor lengths for networks with N=10
!thin curves" and N=30 !thick curves". The cumulative distribution
is shown for stable attractors !solid lines" and unstable attractors
!dashed lines". For N=10 nodes the average length of stable attrac-
tors is %l&nat=2.59; of unstable attractors %l&art=3.56; for N=30 we
find %l&nat=5.50 and %l&art=7.16.

FIG. 4. !Color online" A stable and an unstable attractor in the
same system. !a" Three nodes forming a feedback loop. Each node
i performs the Boolean function negation on the input from its
predecessor j, i.e., xi!t+1"=1−xj!t". !b" Temporal evolution of a
stable attractor. There is a unique causal chain of flipping events
!thick arrows". A retarded update !shaded box" retards all subse-
quent events by the same amount of time. Thus, perturbations heal
immediately. !c" An unstable attractor consisting of three indepen-
dent chains of flipping events propagating along the cycle of nodes.
One of these chains is indicated by thick arrows. Retarding an event
affects subsequent events in the same causal chain only. Causal
chains remain phase shifted. The system does not regain synchrony
after a perturbation.
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• More than one cascade 
of switching events!
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Juggling is unstable

attractor from a random initial condition is much larger than
the fraction of stable attractors, as shown in Fig. 1!b". Thus,
unstable attractors typically have significantly smaller basins
of attraction than stable attractors. The main result is that,
with system size N, the number of stable attractors grows
sublinearly as #N! with !$0.5, as shown in Fig. 2 in the
numerically feasible range of N"40. A least-squares fit of
the form c+bN! fits best !%#2&=0.000 13" with the parameter
values !=0.448, c=1.107, and b=0.108 !with a correlation
coefficient for this fit of r=0.999 742". The number of stable
attractors varies broadly around the mean value, e.g., for N
=30, where we observe a mean value of 1.6, the fraction of
realizations with more than k stable attractors is 0.009 for
k=5 and 8.7$10−4 for k=9. The Poisson distribution with
the same mean has P!%5"$0.006 and P!%9"$7$10−6.

Let us further analyze the number l of states contained in
the attractors. While stable attractors are shorter on average

than unstable attractors, the distribution of attractor lengths is
broader for stable than for unstable attractors, as shown in
Fig. 3. The majority of long attractors with lengths far above
average are stable.

Can we understand by a simple picture how unstable at-
tractors differ from stable ones? Most obviously, unstable
attractors occur when the network falls into two or more
noninteracting clusters. When all updates in one of the clus-
ters are delayed by the time &, this phase lag with respect to
all other clusters cannot heal. All attractors with flipping
events in more than one network cluster are unstable. How-
ever, also in networks consisting of a single cluster unstable
attractors are found. Figure 4 illustrates the coexistence of a
stable and an unstable attractor in a small connected net-
work. The example suggests that an attractor is stable if there
is a single cascade of switching events. Let us consider the
minimal number of simultaneous flipping events

m = min
t

'(i'xi!t" ! xi!t + 1")' !3"

for a given attractor. The attractors with m=0 are the fixed
points. These are stable by definition because no flipping
events are to be retarded. Attractors with m=1 are stable as
well. These attractors contain a step with only a single flip-

FIG. 2. !Color online" System size scaling of the number of
stable attractors plotted as a function of the rescaled number of
nodes !N /5"! with !=0.3,0.5,0.7 !left to right". Error bars in !b"
indicate standard deviation divided by *R with ensemble size R !cf.
Fig. 1".

FIG. 3. Statistics of attractor lengths for networks with N=10
!thin curves" and N=30 !thick curves". The cumulative distribution
is shown for stable attractors !solid lines" and unstable attractors
!dashed lines". For N=10 nodes the average length of stable attrac-
tors is %l&nat=2.59; of unstable attractors %l&art=3.56; for N=30 we
find %l&nat=5.50 and %l&art=7.16.

FIG. 4. !Color online" A stable and an unstable attractor in the
same system. !a" Three nodes forming a feedback loop. Each node
i performs the Boolean function negation on the input from its
predecessor j, i.e., xi!t+1"=1−xj!t". !b" Temporal evolution of a
stable attractor. There is a unique causal chain of flipping events
!thick arrows". A retarded update !shaded box" retards all subse-
quent events by the same amount of time. Thus, perturbations heal
immediately. !c" An unstable attractor consisting of three indepen-
dent chains of flipping events propagating along the cycle of nodes.
One of these chains is indicated by thick arrows. Retarding an event
affects subsequent events in the same causal chain only. Causal
chains remain phase shifted. The system does not regain synchrony
after a perturbation.
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• More than one cascade 
of switching events!
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Back to biology: cell cycle 
revisited

where aij ! ag for a green arrow from protein j to protein i and
aij ! ar for a red arrow from j to i. We first focus on the case
where all of the other checkpoints are always off, except that
of the cell size. That is, the cell size checkpoint will act as a start
signal, whereas other checkpoints will always let the ‘‘traffic’’
pass when it come to it. We therefore arrive at a slightly
simplified network shown in Fig. 1B, with 11 nodes (plus a
signal node). We have also added ‘‘self-degradation’’ (yellow
loops) to those nodes that are not negatively regulated by
others. [This is a simplification for the actual degradation
processes. See supporting information for details.] The deg-
radation is modeled as a time-delayed interaction: if a protein
with a self yellow arrow is active at time t (Si(t) ! 1) and if its
total input is zero from t " 1 to t ! t " td, it will be degraded
at t ! t " td, i.e., Si(t " td) ! 0. The results presented below
were obtained with ag ! #ar ! 1 and td ! 1. As will be
discussed later, the overall dynamic properties of the network
are not very sensitive to the choice of these parameters.

Fixed Points. We use the dynamic model described above to study
the time evolution of the protein states. First, we study the
attractors of the network dynamics by starting from each of the
211 ! 2,048 initial states in the 11-node network of Fig. 1B. We
find that all of the initial states eventually f low into one of the
seven stationary states (fixed points) shown in Table 1. Among
the seven fixed points, there is one big fixed point attracting 1,764
or $86% protein states. Remarkably, this super stable state is
the biological G1 stationary state. The advantage for a cell’s
stationary state to be a big attractor of the network is obvious:
the stability of the cell state is guaranteed. Under normal

conditions, the cell will be sitting at this fixed point, waiting for
the signal for another round of division.

Biological Pathway. Next, we start the cell-cycle process by ‘‘ex-
citing’’ the G1 stationary state with the cell size signal, and
observe that the system goes back to the G1 stationary state. The
temporal evolution of the protein states, presented in Table 2,
indeed follows the cell-cycle sequence, going from the excited G1
state (the START) to the S phase, the G2 phase, the M phase,
and finally to the stationary G1 state. This is the biological
trajectory or pathway of the cell-cycle network.

To investigate the dynamical stability of this biological path-
way, we study the dynamic trajectories of all 1,764 protein states
that will f low to the G1 fixed point. In Fig. 2, each of these protein
states is represented by a dot, with the arrows between them
indicating dynamic flows from one state to another. The bio-
logical pathway is colored in blue and so is the node representing
the G1 stationary state. We see that the dynamic flow of the
protein states is convergent onto the biological pathway, making
the pathway an attracting trajectory of the dynamics. With such
a topological structure of the phase diagram of protein states, the
cell-cycle pathway is a very stable trajectory; it is very unlikely
for a sequence of events, starting at the beginning (or at any
other point) of the cell-cycle process, to deviate from the
cell-cycle pathway. Interestingly, the topology of the converging
trajectories shown in Fig. 2 is reminiscent of the converging
kinetic pathways in protein folding where a protein sequence is
facing the challenge of finding the unique native state among a
huge number of conformations (10–12).

Comparison with Random Networks. To investigate how likely a big
fixed point and a converging pathway can arise by chance, we

Fig. 1. (A) The cell-cycle network of the budding yeast. (B) Simplified cell-cycle network with only one checkpoint ‘‘cell size.’’

Table 1. The fixed points of the cell-cycle network

Basin size Cln3 MBF SBF Cln1,2 Cdh1 Swi5 Cdc20 Clb5,6 Sic1 Clb1,2 Mcm1

1,764 0 0 0 0 1 0 0 0 1 0 0
151 0 0 1 1 0 0 0 0 0 0 0
109 0 1 0 0 1 0 0 0 1 0 0

9 0 0 0 0 0 0 0 0 1 0 0
7 0 1 0 0 0 0 0 0 1 0 0
7 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0

Each fixed point is represented in a row. The first column is the size of the basin of attraction for the fixed point; the other 11 columns
show the protein states of the fixed point. The protein states of the biggest fixed point correspond to that of the G1 stationary state.

4782 ! www.pnas.org"cgi"doi"10.1073"pnas.0305937101 Li et al.

• Same model of yeast CC
• Same update gates
• Noise in signal propagation time
➡continuous time
➡low-pass filter for switching

• Cycle: state S1 triggers Cln3 activation
study an ensemble of random networks (13, 14) that have the
same numbers of nodes and links in each color as in the cell-cycle
network. We find that random networks typically have more

attractors (fixed points and limit cycles), with the average
number being 14.28. The sizes of the basins of attraction in the
random networks have a power-law distribution, as shown in Fig.

Table 2. Temporal evolution of protein states for the simplified cell-cycle network of Fig. 1B

Time Cln3 MBF SBF Cln1,2 Cdh1 Swi5
Cdc20 and

Cdc14 Clb5,6 Sic1 Clb1,2 Mcm1!SFF Phase

1 1 0 0 0 1 0 0 0 1 0 0 START
2 0 1 1 0 1 0 0 0 1 0 0 G1

3 0 1 1 1 1 0 0 0 1 0 0 G1

4 0 1 1 1 0 0 0 0 0 0 0 G1

5 0 1 1 1 0 0 0 1 0 0 0 S
6 0 1 1 1 0 0 0 1 0 1 1 G2

7 0 0 0 1 0 0 1 1 0 1 1 M
8 0 0 0 0 0 1 1 0 0 1 1 M
9 0 0 0 0 0 1 1 0 1 1 1 M

10 0 0 0 0 0 1 1 0 1 0 1 M
11 0 0 0 0 1 1 1 0 1 0 0 M
12 0 0 0 0 1 1 0 0 1 0 0 G1

13 0 0 0 0 1 0 0 0 1 0 0 Stationary G1

The right column indicates the cell-cycle phases. Note that the number of time steps in each phase do not reflect its actual duration.

Fig. 2. Dynamical trajectories of the 1,764 protein states (green nodes) flowing to the G1 fixed point (blue node). Arrows between states indicate the direction
of dynamic flow from one state to another. The cell-cycle sequence is colored blue. The size of a node and the thickness of an arrow are proportional to the
logarithm of the traffic flow passing through them.

Li et al. PNAS " April 6, 2004 " vol. 101 " no. 14 " 4783
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Does the cell cycle juggle?
• Stronger noise
• allow delays past 1/2 the 

propagation time unit
• Looser stability measure
• G1 is regularly assumed 

for a time period long 
enough to trigger CC 
restart

the Start state again and check whether it completes the
cycle. Again, we use the lose criterion described above,
which means we only request the system to reach the Start
state again. In Fig. 4 we show the ratio of erroneous runs of
the biological pathway plotted against the noise level wmax.
It can be clearly seen that for reasonable noise levels the
ratio of sequence runs not ending in a biological fixed point
is very small. In fact, even with unrealistically high noise
levels of wmax ¼ 20 or more (which amounts to arbitrary
update times), only in a quarter of the runs the system
jumps out of the biological state sequence. At such high
noise levels, the homogeneity of the delay times is
practically irrelevant. If we allowed a different time delay
value for each node, the results of strong noise would be
unchanged.

The by far dominating cause for this (very small)
instability is the first step (cf. Table 1) where both SBF

and MBF are activated by Cln3. If the Cln3 concentration
is degraded before activating the transcription of either
SBF or MBF, the system loses the biological sequence. If
we explicitly force Cln3 activity to sustain long enough to
make sure that both SBF and MBF are produced, even this
small instability vanishes and the system assumes practi-
cally complete stability for all reasonable noise levels (0:1%
erroneous runs at wmax ¼ 3td). This superstability is due to
the fact that all proteins keep their activity states for an
extended time. Extremely strong noise is therefore needed
to delay a single activity switch long enough to significantly
perturb the system.
We have tested all results with a wide variety of

parameters. With a fixed number for the delay time td , only
the noise level wmax and the characteristic protein buildup
time t can be adjusted. Our results are completely robust
against changes of t, even removing the filter completely or
setting it an order of magnitude larger than the delay time
does not affect the robustness properties described above.

4. Discussion

As we have shown in the previous section, the sequence
of states as recorded in Li et al. (2004) is astonishingly
stable against fluctuations of the protein activation and
degradation times. We have used a very simple model and
have neglected details of the system such as different time
scales for the different processes involved. Thus, it is not
clear that our results translate directly to the biological
system. However, we can rephrase our results in the
following way: the robustness of the state sequence means
that the control network completes its cycle even though
the fluctuations destroy the synchrony of the model in Li
et al. (2004). This means that the sequence of activation/
deactivation reactions is such that no coincidental syn-
chronization of different processes is necessary for reliable
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S. Braunewell, S. Bornholdt / Journal of Theoretical Biology 245 (2007) 638–643642

The system stays within 
the same attractor!

the Start state again and check whether it completes the
cycle. Again, we use the lose criterion described above,
which means we only request the system to reach the Start
state again. In Fig. 4 we show the ratio of erroneous runs of
the biological pathway plotted against the noise level wmax.
It can be clearly seen that for reasonable noise levels the
ratio of sequence runs not ending in a biological fixed point
is very small. In fact, even with unrealistically high noise
levels of wmax ¼ 20 or more (which amounts to arbitrary
update times), only in a quarter of the runs the system
jumps out of the biological state sequence. At such high
noise levels, the homogeneity of the delay times is
practically irrelevant. If we allowed a different time delay
value for each node, the results of strong noise would be
unchanged.

The by far dominating cause for this (very small)
instability is the first step (cf. Table 1) where both SBF

and MBF are activated by Cln3. If the Cln3 concentration
is degraded before activating the transcription of either
SBF or MBF, the system loses the biological sequence. If
we explicitly force Cln3 activity to sustain long enough to
make sure that both SBF and MBF are produced, even this
small instability vanishes and the system assumes practi-
cally complete stability for all reasonable noise levels (0:1%
erroneous runs at wmax ¼ 3td). This superstability is due to
the fact that all proteins keep their activity states for an
extended time. Extremely strong noise is therefore needed
to delay a single activity switch long enough to significantly
perturb the system.
We have tested all results with a wide variety of

parameters. With a fixed number for the delay time td , only
the noise level wmax and the characteristic protein buildup
time t can be adjusted. Our results are completely robust
against changes of t, even removing the filter completely or
setting it an order of magnitude larger than the delay time
does not affect the robustness properties described above.

4. Discussion

As we have shown in the previous section, the sequence
of states as recorded in Li et al. (2004) is astonishingly
stable against fluctuations of the protein activation and
degradation times. We have used a very simple model and
have neglected details of the system such as different time
scales for the different processes involved. Thus, it is not
clear that our results translate directly to the biological
system. However, we can rephrase our results in the
following way: the robustness of the state sequence means
that the control network completes its cycle even though
the fluctuations destroy the synchrony of the model in Li
et al. (2004). This means that the sequence of activation/
deactivation reactions is such that no coincidental syn-
chronization of different processes is necessary for reliable
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Is reliability evolvable?
• Random threshold 

networks
➡ map attractor 

landscape
➡ record stable and 

unstable attractors
➡ fitness score

• Evolutionary dynamics
➡ rewire 1 link
➡ measure new fitness
➡ if higher than 

original, keep new 
network

A) Full attractor 
landscape

sum of stable basin 
sizes

B) Functional attractor
largest stable 

attractor basin size



Evolving a stable landscape is 
easy!

!i!t + 1" = #+ 1 if $
i=1

n

Aij! j!t" " 0,

− 1 otherwise,

!1"

where nodes are updated in parallel. As the dynamics is de-
terministic in a finite state space, the system always ends up
in an attractor, which can be either a fixed point or a limit
cycle !as, in general, our weight matrix is asymmetric, Aij
!Aji". The “basin size” of an attractor is defined as the num-
ber of all states that lead to this attractor. We assess the
stability of a network against fluctuations of the signal trans-
mission times using the reliability criterion of %13&, which
provides a deterministic measure for a network under inves-
tigation. It requires two principal assumptions: First, the
nodes implement a low-pass filter that removes the effect of
short-term fluctuations of the activity states. This is justified
by the buildup and decay processes of protein concentrations
%25&. Second, the signal time fluctuations are small compared
to the time scales of the processes and that of the filter. Thus,
a single signal fluctuation does not dramatically perturb the
system, but only the addition of many similar perturbations
over time can drive the system away from an initially syn-
chronous behavior.

To determine the stability of an attractor, first the synchro-
nous state sequence is recorded. Starting from one state of
the limit cycle, we determine all switching events that occur
in the next synchronous step and call the set of switching
nodes M. For every subset S!M we change the switching
times from t=0 to t=#, i.e., we retard the switching times for
these nodes by a small number. Thus, a new intermediate
state from time t=0 to t=# is created, where only some
nodes have already switched. We then follow the dynamics,
with two times for every synchronous time step:

!i" Determine the states at times t= i, i=1,2 , . . . and t!= i
+# from the states at t= i−1 and t!= i−1+ #, respectively.

!ii" Apply the filter rule: if a node switches both at integer
and perturbed time, flip the state at integer time, thus effec-
tively removing both switching events. As the activity state
has persisted only for a time span of #, we assume it does not
affect the system further.

!iii" If all nodes switch at either integer or perturbed time,
the system has regained synchrony and the attractor is stable
for this particular subset of perturbed nodes. If, however, the
system reaches a new attractor in the combined state space of
both times, the system is unstable as the perturbation can in
general persist in the system and might diverge, thus leading
to a different attractor or to a “chaotic” regime of incessant
switchings.

We call an attractor “stable” if it is stable against all sub-
set perturbations, otherwise we call it “unstable.” Fixed
points are trivially stable by this definition. We use two dif-
ferent evolutionary selection criteria. In the first part, the
stability of the full attractor landscape is investigated and the
fitness score is given by the sum of the basin sizes of all
stable attractors. In the second part, the fitness score is de-
termined by the stability and basin size of one “functional
attractor” only.

In every step of the evolution, the network is copied and

mutated and its stability assessment is compared with the
mother network. If the fitness of the mutant is higher than
that of the mother network, the mutant is kept and replaces
the original, otherwise a new mutant is tested. This is re-
peated until the requested criterion is maximally fulfilled.

Mutation is performed through a single link rewiring, i.e.,
one connection between two nodes is removed and another
new connection between two nodes is added. This procedure
keeps the average connectivity of the network during evolu-
tion. As our method requires full enumeration of the space of
2N states, where N is the number of nodes, we can only
perform this analysis for small networks. We show the re-
sults for N=16 nodes, but have checked that the conclusions
also hold for networks with N=12 and 20 nodes.

In the first part, let us evolve networks toward stability
regarding the complete attractor landscape. Given a network,
we accept a mutation of it if the mutant has a higher number
of initial states leading to a stable attractor. If so, the network
is replaced by the mutant and the next evolution step is
taken, otherwise a new mutation is tested. This procedure
stops as soon as all initial states lead to stable attractors. In
Fig. 1, we show the average number of evolution steps nec-
essary to reach full stability of the attractor landscape, plot-
ted against the average connectivity, defined by the total
number of edges divided by the number of nodes. Networks
consist of 16 nodes and 1000 repetitions were run for every
data point. One can see that for all connectivities a very
small number of mutations already suffices to find a com-
pletely stable network. Using a more restrictive method of
selection, such as, for example, choosing the fittest out of
several tested mutant networks, further reduces the average
evolution steps significantly !data not shown". To ensure that
we do not simply observe the effects of networks evolving
toward fixed points !which are always stable", we have
checked all results also with the rule that a fixed point is
counted as an unstable attractor. We do not show the results
here, but the conclusions drawn above hold also in this case.
The only qualitative difference is that the pronounced drop at
low connectivities of the average number of evolution steps
!Fig. 1" is not present if fixed points are regarded as unstable
attractors. Thus, the two different slopes for 'k($3 and 'k(
%3 are due to the abundance of fixed points in networks
with low connectivities.
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FIG. 1. Network evolution rapidly leads to stable attractor land-
scapes: average number of evolution steps vs connectivity of the
networks. The networks consist of 16 nodes; each data point corre-
sponds to the average over 1000 runs.
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•  How about one “functional” 
attractor basin?
➡ evolution stops when half of 

the configuration space 
belongs to the stable, 
functional attractor

Next, it is interesting to look at dynamical properties and
how they change during the course of the evolution process.
In Table I, we compare random networks with networks that
have undergone the evolution process for an average connec-
tivity of !k"=3 #results are typical for any value of !k"$. One
can see that the average number of attractors has decreased
and that the size of the largest basin has increased at the
same time. Again, these significant effects take place within
very few evolution steps. Thus, we find that the dynamical
landscape of a threshold network can be significantly altered
by only a few mutations of the network topology. Stability of
the attractor landscape can be achieved without significant
changes of the overall network structure.

So far we have not constrained the dynamics in any way,
so the evolved networks might show different dynamical be-
havior from the original networks. If we think of attractors as
a function performed by a genetic network, we should re-
strict evolution to networks that are able to reproduce the
original attractor dynamics.

This leads to a modified selection criterion with the fol-
lowing target: We choose the largest attractor of the original
network as the “functional attractor” and require stabilization
of this attractor. If it is a fixed point or a stable limit cycle,
there is trivially nothing to do in the evolution, so we just
discard these networks and create a new one until we find a
network with an unstable largest attractor. During evolution,
every mutant has to reproduce this attractor. This means that,
starting at one step of the attractor cycle, the dynamics of the
original network and of the mutant have to be exactly the
same. If the mutant does not reproduce the attractor, it is
immediately discarded. We do not request that the networks
reproduce the transient states as this constraint is too strict
and disallows practically every mutation.

The fitness score is given by the basin size of the func-
tional attractor or is 0 if the functional attractor is unstable.
We have employed two different selection criteria: strict or
neutral selection. In the strict selection scheme, a network is
only accepted if it increases the fitness score, whereas in the
neutral selection a larger or equal fitness score suffices. This
means that in the strict scheme, the stabilization has to occur
within a single rewiring, whereas the neutral criterion allows
for a random walk through the space of networks that exhibit
the functional attractor. The evolution process is complete as
soon as the functional attractor is stable with a basin size of
half the total state space, which makes the functional attrac-
tor the dominant dynamical expression pattern. In Fig. 2, we
show the results of the evolution processes using the func-
tional attractor criterion for a network size of N=16 and

1000 attempted evolution runs. The ratio of networks that
can be stabilized in both selection schemes is plotted against
the average connectivity of the networks. For each evolution
step, we have attempted 20 000 mutations before marking a
network as not evolvable toward stability #this simulation
parameter does not influence the results as long as it is suf-
ficiently high$. In the neutral selection, a stable network has
to be found within 106 mutation attempts during the full
evolution run.

First, one can see that even in the single-step evolution
#points marked by +$, more than half of all networks can be
stabilized. For very low connectivities as well as connectivi-
ties above 3, more than 3

4 of all networks fulfill the criterion.
In the case of neutral selection #points marked by !$, this
ratio is even higher. Especially for networks of connectivities
around 1.5, the probability of evolving toward a stable real-
ization is significantly increased. For connectivities above 2,
practically every network can be stabilized using this evolu-
tion process.

There is a dip at connectivities around 1 in the single-step
evolution and around 1.5 in the neutral selection. The reason
for this is that at small connectivities, attractor cycles are

FIG. 3. #Color online$ Attractor stabilization can be achieved by
small topological changes. See text for details.

TABLE I. Characteristics of random and evolved networks for
N=16, !k"=3. Averages over 20 000 runs.

Random
networks

Evolved
networks

Number of attractors 3.98"0.02 2.12"0.01
Largest basin size 47 800"100 57 100"100
Fitness score 40 300"200 65 536
No. of evolution steps 2.07"0.02 0
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FIG. 2. Ratio of networks stabilized in the evolution against
average connectivity. N=16, every data point averaged over 1000
evolution runs for neutral mutations #!$ and single link rewirings
#+$.
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An example

Next, it is interesting to look at dynamical properties and
how they change during the course of the evolution process.
In Table I, we compare random networks with networks that
have undergone the evolution process for an average connec-
tivity of !k"=3 #results are typical for any value of !k"$. One
can see that the average number of attractors has decreased
and that the size of the largest basin has increased at the
same time. Again, these significant effects take place within
very few evolution steps. Thus, we find that the dynamical
landscape of a threshold network can be significantly altered
by only a few mutations of the network topology. Stability of
the attractor landscape can be achieved without significant
changes of the overall network structure.

So far we have not constrained the dynamics in any way,
so the evolved networks might show different dynamical be-
havior from the original networks. If we think of attractors as
a function performed by a genetic network, we should re-
strict evolution to networks that are able to reproduce the
original attractor dynamics.

This leads to a modified selection criterion with the fol-
lowing target: We choose the largest attractor of the original
network as the “functional attractor” and require stabilization
of this attractor. If it is a fixed point or a stable limit cycle,
there is trivially nothing to do in the evolution, so we just
discard these networks and create a new one until we find a
network with an unstable largest attractor. During evolution,
every mutant has to reproduce this attractor. This means that,
starting at one step of the attractor cycle, the dynamics of the
original network and of the mutant have to be exactly the
same. If the mutant does not reproduce the attractor, it is
immediately discarded. We do not request that the networks
reproduce the transient states as this constraint is too strict
and disallows practically every mutation.

The fitness score is given by the basin size of the func-
tional attractor or is 0 if the functional attractor is unstable.
We have employed two different selection criteria: strict or
neutral selection. In the strict selection scheme, a network is
only accepted if it increases the fitness score, whereas in the
neutral selection a larger or equal fitness score suffices. This
means that in the strict scheme, the stabilization has to occur
within a single rewiring, whereas the neutral criterion allows
for a random walk through the space of networks that exhibit
the functional attractor. The evolution process is complete as
soon as the functional attractor is stable with a basin size of
half the total state space, which makes the functional attrac-
tor the dominant dynamical expression pattern. In Fig. 2, we
show the results of the evolution processes using the func-
tional attractor criterion for a network size of N=16 and

1000 attempted evolution runs. The ratio of networks that
can be stabilized in both selection schemes is plotted against
the average connectivity of the networks. For each evolution
step, we have attempted 20 000 mutations before marking a
network as not evolvable toward stability #this simulation
parameter does not influence the results as long as it is suf-
ficiently high$. In the neutral selection, a stable network has
to be found within 106 mutation attempts during the full
evolution run.

First, one can see that even in the single-step evolution
#points marked by +$, more than half of all networks can be
stabilized. For very low connectivities as well as connectivi-
ties above 3, more than 3

4 of all networks fulfill the criterion.
In the case of neutral selection #points marked by !$, this
ratio is even higher. Especially for networks of connectivities
around 1.5, the probability of evolving toward a stable real-
ization is significantly increased. For connectivities above 2,
practically every network can be stabilized using this evolu-
tion process.

There is a dip at connectivities around 1 in the single-step
evolution and around 1.5 in the neutral selection. The reason
for this is that at small connectivities, attractor cycles are

FIG. 3. #Color online$ Attractor stabilization can be achieved by
small topological changes. See text for details.

TABLE I. Characteristics of random and evolved networks for
N=16, !k"=3. Averages over 20 000 runs.

Random
networks

Evolved
networks

Number of attractors 3.98"0.02 2.12"0.01
Largest basin size 47 800"100 57 100"100
Fitness score 40 300"200 65 536
No. of evolution steps 2.07"0.02 0
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FIG. 2. Ratio of networks stabilized in the evolution against
average connectivity. N=16, every data point averaged over 1000
evolution runs for neutral mutations #!$ and single link rewirings
#+$.
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Does function dictate structure?
•  Let’s find ALL small networks 

that could perform the 
segment polarity patterning in 
Drosophila
➡ how many of these are 

robust?

Perrimon, 1994), and we focus on its function of stabilizing a
periodic pattern of sharp boundaries defined by the en- and the
wg-expressing cells (Vincent and O’Farrell, 1992). As depicted
in Figure 1, the core network in Drosophila consists of the
hedgehog (Hh) (Lum and Beachy, 2004) and the wingless
(Wg) (Klingensmith and Nusse, 1994) signal transduction
pathways. Previous studies demonstrated that this network is

a very robust patterning module. Differential equation models
of the network can stabilize andmaintain the required patterns
of en and wg expression with a remarkable tolerance to
parameter changes (von Dassow et al, 2000; von Dassow and
Odell, 2002; Ingolia, 2004). A simple Boolean model was
shown to capture the main feature of the network’s dynamics
(Albert and Othmer, 2003). These findings have led to the
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Figure 1 Segment polarity network and expression pattern ofwg and en. (A) The segment polarity gene network model of Ingolia (2004). Ellipses represent mRNAs
and rectangles proteins. Lines ending with an arrow and a dot denote activation and repression, respectively. Dashed lines indicate intercellular regulations. The gray line
means no direct biological evidence. Nodes are colored into three groups, each of which is represented by one node in (B). (B) The simplified topology of (A). Each node
here represents a group of nodes in (A) of the same color. (C) Our model of the segment polarity gene network (see also von Dassow and Odell, 2002). Slp regulateswg
positively through themid gene and its product, which is represented by an arrow from ‘S’ to ‘W’ in (D). (D) The simplified topology of (C). (E) The initial condition of the
patterning function. In three-node networks, ‘S’ expresses in the posterior four cells of the parasegment. The pattern is periodic. (F) The final stable pattern. In three-node
networks, ‘S’ is not fixed to be any specific pattern in the final state. (G) zw3 mutant phenotype. (H) ptc mutant phenotype. Note that (E), (F), (G) and (H) are a simple
representation of the actual embryo surface, which is extended in both directions and includes 14 segments.
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• Enumerated all possible 3-
node networks
➡ each can regulate itself 

and others
➡ each link can be inter- 

and extracellular
➡ restrict to 2 of 3
➡ 14,348,907 topologies



Does function dictate structure?
• A network is functional if:
➡ has perform correct 

patterning
➡ robustness: fraction of 

parameter space that 
can perform the function
➡ (ODE’s), parameters 

sampled at random

Perrimon, 1994), and we focus on its function of stabilizing a
periodic pattern of sharp boundaries defined by the en- and the
wg-expressing cells (Vincent and O’Farrell, 1992). As depicted
in Figure 1, the core network in Drosophila consists of the
hedgehog (Hh) (Lum and Beachy, 2004) and the wingless
(Wg) (Klingensmith and Nusse, 1994) signal transduction
pathways. Previous studies demonstrated that this network is

a very robust patterning module. Differential equation models
of the network can stabilize andmaintain the required patterns
of en and wg expression with a remarkable tolerance to
parameter changes (von Dassow et al, 2000; von Dassow and
Odell, 2002; Ingolia, 2004). A simple Boolean model was
shown to capture the main feature of the network’s dynamics
(Albert and Othmer, 2003). These findings have led to the
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Excluding direct auto-
regulation on E and S

Biological topology: high score, not 
highest.

Perrimon, 1994), and we focus on its function of stabilizing a
periodic pattern of sharp boundaries defined by the en- and the
wg-expressing cells (Vincent and O’Farrell, 1992). As depicted
in Figure 1, the core network in Drosophila consists of the
hedgehog (Hh) (Lum and Beachy, 2004) and the wingless
(Wg) (Klingensmith and Nusse, 1994) signal transduction
pathways. Previous studies demonstrated that this network is

a very robust patterning module. Differential equation models
of the network can stabilize andmaintain the required patterns
of en and wg expression with a remarkable tolerance to
parameter changes (von Dassow et al, 2000; von Dassow and
Odell, 2002; Ingolia, 2004). A simple Boolean model was
shown to capture the main feature of the network’s dynamics
(Albert and Othmer, 2003). These findings have led to the
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A twist on polarity models
Perrimon, 1994), and we focus on its function of stabilizing a
periodic pattern of sharp boundaries defined by the en- and the
wg-expressing cells (Vincent and O’Farrell, 1992). As depicted
in Figure 1, the core network in Drosophila consists of the
hedgehog (Hh) (Lum and Beachy, 2004) and the wingless
(Wg) (Klingensmith and Nusse, 1994) signal transduction
pathways. Previous studies demonstrated that this network is

a very robust patterning module. Differential equation models
of the network can stabilize andmaintain the required patterns
of en and wg expression with a remarkable tolerance to
parameter changes (von Dassow et al, 2000; von Dassow and
Odell, 2002; Ingolia, 2004). A simple Boolean model was
shown to capture the main feature of the network’s dynamics
(Albert and Othmer, 2003). These findings have led to the

hh hhHh Hh

Hh Hh

En En

Slp Slp

Wg

Wg Wg

Wg

Cn CnCi Cici ci

en en

slp slp

wg
wg

E

W

S

E

W

S

Anterior Posterior

W

W
W W

W

W
W

W

W
W

W
W

W
W

WW

W

E

E
E

E E

E
E

E

E
E

E
E

E

W

W
W

WE

E

E
E

E

E
E

W

E

E
E

E

W

W
W

W

WW

W

W

E

E

EE

E E

E

E

Midmid

A C

B D

E

F

G

H

Figure 1 Segment polarity network and expression pattern ofwg and en. (A) The segment polarity gene network model of Ingolia (2004). Ellipses represent mRNAs
and rectangles proteins. Lines ending with an arrow and a dot denote activation and repression, respectively. Dashed lines indicate intercellular regulations. The gray line
means no direct biological evidence. Nodes are colored into three groups, each of which is represented by one node in (B). (B) The simplified topology of (A). Each node
here represents a group of nodes in (A) of the same color. (C) Our model of the segment polarity gene network (see also von Dassow and Odell, 2002). Slp regulateswg
positively through themid gene and its product, which is represented by an arrow from ‘S’ to ‘W’ in (D). (D) The simplified topology of (C). (E) The initial condition of the
patterning function. In three-node networks, ‘S’ expresses in the posterior four cells of the parasegment. The pattern is periodic. (F) The final stable pattern. In three-node
networks, ‘S’ is not fixed to be any specific pattern in the final state. (G) zw3 mutant phenotype. (H) ptc mutant phenotype. Note that (E), (F), (G) and (H) are a simple
representation of the actual embryo surface, which is extended in both directions and includes 14 segments.
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Actually, 2 nodes are enough 
for patterning...
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Figure 3 Skeletons and functional modules. (A) The four skeletons in robust two-node topologies (black lines). The green, orange and red links are neutral, bad and
very bad links, respectively. The numbers below the skeletons are its Q value and the size of its family. (B) The three kinds of modules correspond to the three
subfunctions in three-node networks. The bold modules are also those of the two-node networks. Many of these modules can be identified as significant network motifs
among all networks with Q40.1 (see details in Supplementary information). The combination of these modules leads to 44 robust core topologies or skeletons. The
number under each module is its Q value, the frequency the module is being used in the 44 skeletons.
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4 core topologies: 
black links are required 
for robust patterning
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