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- Where does noise come from? - 
Extrinsic 

noise
Intrinsic 
noise• global to 1 cell

• variable among cells
• inherent stochasticity 
of regulation
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Fig. S1. A map of the E. coli chromosome with the origin of replication (oriC), cfp and

yfp loci indicated.  Locations were chosen to avoid systematic, but remain sensitive to

stochastic, differences in gene copy number.  The <> symbol denotes replacement by

homologous recombination (S3).
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is that remaining part of the total noise arising
from the discrete nature of the biochemical
process of gene expression. No matter how
accurately the levels of regulatory proteins
are controlled, intrinsic noise fundamentally
limits the precision of gene regulation.

Operationally, intrinsic noise for a given
gene may be defined as the extent to which
the activities of two identical copies of that
gene, in the same intracellular environment,
fail to correlate (Fig. 1, A and B). Therefore,
we built strains of Escherichia coli, incorpo-
rating the distinguishable cyan (cfp) and yel-
low (yfp) alleles of green fluorescent protein
in the chromosome. In each strain, the two
reporter genes were controlled by identical
promoters. To avoid systematic differences in
copy number, we integrated the genes at loci
equidistant from, and on opposite sides of,
the origin of replication (fig. S1). The two
fluorescent proteins exhibited statistically
equivalent intensity distributions and thus
displayed the necessary independence and
equivalence to detect noise (7 ).

For measurement, cells were grown in LB
medium and photographed through cfp and yfp
fluorescence filter sets and in phase contrast
(Fig. 2) (7). A computerized image analysis
system identified cells and quantified their
mean fluorescent intensities. Both intrinsic and
extrinsic noise could be determined from plots
of CFP versus YFP fluorescence intensity in
individual cells (Fig. 3A) (7). The value of !int

indicates the mean relative difference in fluo-
rescence intensity of the two reporter proteins
in the same cell; for instance, if !int " 0.25,
then the two colors typically differ by about
25%. Because !int and !ext make orthogonal
contributions to the total noise, !tot, the three
noise values satisfy the relation !int

2 # !ext
2 "

!tot
2 (7, 8). Measurements of these variables for

various strains and conditions are presented in
Table 1.

To determine the importance of noise in
vivo, we began with the least noisy gene ex-
pression conditions obtainable without feed-
back: strong constitutive promoters driving the
expression of stable proteins. Specifically, we
constructed strains incorporating artificial lac-
repressible promoters (9) in lac– strain back-
grounds, in which the lac repressor gene, lacI, is
deleted. We obtained low noise levels (!int $
0.05) and low cell-cell variation overall (!tot $
0.08) in these strains (Fig. 2E). We obtained
similar results in another strain incorporating
two copies of the somewhat stronger promoter
%PR (Table 1). These results indicate (i) that
constitutive gene expression can be remarkably
uniform under some conditions, and (ii) that
this low noise state does not strictly depend on
a particular promoter sequence.

Few natural E. coli genes are transcribed
as strongly as these phage-derived promot-
ers (10). To see how much noise there is at
lower rates of transcription, we moved the

reporters into several wild-type (lacI#) E.
coli strains, where they produced only 3 to
6% as much protein. Under these condi-
tions, both intrinsic and extrinsic noise in-
creased by a factor of &5 (Fig. 2, A and D,
and Table 1). The effect was reversible:
Addition of saturating amounts of isopro-
pyl '-D-thiogalactopyranoside (IPTG),
which binds and inactivates the lac repres-
sor, restored noise (both !int and !ext) and
amounts of fluorescent protein expression
to their approximate values in lac– strains
(Fig. 2B). Thus, the noise increase found in
wild-type strains can be attributed directly

to the activity of LacI and the correspond-
ing reduction of transcription rate. LacI
affects extrinsic noise as well, increasing it
by a factor of &5, to &0.3. This change
indicates the presence of cell-cell variation
in LacI expression (8, 11).

Models of stochastic gene expression pre-
dict that intrinsic noise should increase as the
amount of transcript decreases (8, 12). To more
effectively repress the reporter genes, we intro-
duced a plasmid constitutively expressing the
lac repressor (7) into strains otherwise deleted
for lacI. We added different amounts of IPTG
to growing cultures (Fig. 3, B and C). Intrinsic

Fig. 1. Intrinsic and extrinsic
noise can be measured and
distinguished with two genes
(cfp, shown in green; yfp,
shown in red) controlled by
identical regulatory sequenc-
es. Cells with the same
amount of each protein ap-
pear yellow, whereas cells ex-
pressing more of one fluores-
cent protein than the other
appear red or green. (A) In
the absence of intrinsic noise,
the two fluorescent proteins
fluctuate in a correlated fash-
ion over time in a single cell
(left). Thus, in a population,
each cell will have the same
amount of both proteins, al-
though that amount will dif-
fer from cell to cell because
of extrinsic noise (right). (B)
Expression of the two genes
may become uncorrelated in individual cells because of intrinsic noise (left), giving rise to a
population in which some cells express more of one fluorescent protein than the other.

Fig. 2. Noise in E. coli. CFP and YFP fluorescence images were combined in the green and red channels,
respectively. (A) In strain RP22, with promoters repressed by the wild-type lacI gene, red and green
indicate significant amounts of intrinsic noise. (B) RP22 grown in the presence of lac inducer, 2 mM IPTG.
Both fluorescent proteins are expressed at higher levels and the cells exhibit less noise. (C) As in (B),
except the recA gene has been deleted, increasing intrinsic noise. (D) Another wild-type strain, MG22,
shows noise characteristics similar to those of RP22. (E) Expression levels and noise in unrepressed lacI–
strain M22 are similar to those in lacI# strains induced with IPTG (B). (F) M22 cells regulated by the
Repressilator (16), an oscillatory network that amplifies intrinsic noise.
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is that remaining part of the total noise arising
from the discrete nature of the biochemical
process of gene expression. No matter how
accurately the levels of regulatory proteins
are controlled, intrinsic noise fundamentally
limits the precision of gene regulation.

Operationally, intrinsic noise for a given
gene may be defined as the extent to which
the activities of two identical copies of that
gene, in the same intracellular environment,
fail to correlate (Fig. 1, A and B). Therefore,
we built strains of Escherichia coli, incorpo-
rating the distinguishable cyan (cfp) and yel-
low (yfp) alleles of green fluorescent protein
in the chromosome. In each strain, the two
reporter genes were controlled by identical
promoters. To avoid systematic differences in
copy number, we integrated the genes at loci
equidistant from, and on opposite sides of,
the origin of replication (fig. S1). The two
fluorescent proteins exhibited statistically
equivalent intensity distributions and thus
displayed the necessary independence and
equivalence to detect noise (7 ).

For measurement, cells were grown in LB
medium and photographed through cfp and yfp
fluorescence filter sets and in phase contrast
(Fig. 2) (7). A computerized image analysis
system identified cells and quantified their
mean fluorescent intensities. Both intrinsic and
extrinsic noise could be determined from plots
of CFP versus YFP fluorescence intensity in
individual cells (Fig. 3A) (7). The value of !int

indicates the mean relative difference in fluo-
rescence intensity of the two reporter proteins
in the same cell; for instance, if !int " 0.25,
then the two colors typically differ by about
25%. Because !int and !ext make orthogonal
contributions to the total noise, !tot, the three
noise values satisfy the relation !int

2 # !ext
2 "

!tot
2 (7, 8). Measurements of these variables for

various strains and conditions are presented in
Table 1.

To determine the importance of noise in
vivo, we began with the least noisy gene ex-
pression conditions obtainable without feed-
back: strong constitutive promoters driving the
expression of stable proteins. Specifically, we
constructed strains incorporating artificial lac-
repressible promoters (9) in lac– strain back-
grounds, in which the lac repressor gene, lacI, is
deleted. We obtained low noise levels (!int $
0.05) and low cell-cell variation overall (!tot $
0.08) in these strains (Fig. 2E). We obtained
similar results in another strain incorporating
two copies of the somewhat stronger promoter
%PR (Table 1). These results indicate (i) that
constitutive gene expression can be remarkably
uniform under some conditions, and (ii) that
this low noise state does not strictly depend on
a particular promoter sequence.

Few natural E. coli genes are transcribed
as strongly as these phage-derived promot-
ers (10). To see how much noise there is at
lower rates of transcription, we moved the

reporters into several wild-type (lacI#) E.
coli strains, where they produced only 3 to
6% as much protein. Under these condi-
tions, both intrinsic and extrinsic noise in-
creased by a factor of &5 (Fig. 2, A and D,
and Table 1). The effect was reversible:
Addition of saturating amounts of isopro-
pyl '-D-thiogalactopyranoside (IPTG),
which binds and inactivates the lac repres-
sor, restored noise (both !int and !ext) and
amounts of fluorescent protein expression
to their approximate values in lac– strains
(Fig. 2B). Thus, the noise increase found in
wild-type strains can be attributed directly

to the activity of LacI and the correspond-
ing reduction of transcription rate. LacI
affects extrinsic noise as well, increasing it
by a factor of &5, to &0.3. This change
indicates the presence of cell-cell variation
in LacI expression (8, 11).

Models of stochastic gene expression pre-
dict that intrinsic noise should increase as the
amount of transcript decreases (8, 12). To more
effectively repress the reporter genes, we intro-
duced a plasmid constitutively expressing the
lac repressor (7) into strains otherwise deleted
for lacI. We added different amounts of IPTG
to growing cultures (Fig. 3, B and C). Intrinsic

Fig. 1. Intrinsic and extrinsic
noise can be measured and
distinguished with two genes
(cfp, shown in green; yfp,
shown in red) controlled by
identical regulatory sequenc-
es. Cells with the same
amount of each protein ap-
pear yellow, whereas cells ex-
pressing more of one fluores-
cent protein than the other
appear red or green. (A) In
the absence of intrinsic noise,
the two fluorescent proteins
fluctuate in a correlated fash-
ion over time in a single cell
(left). Thus, in a population,
each cell will have the same
amount of both proteins, al-
though that amount will dif-
fer from cell to cell because
of extrinsic noise (right). (B)
Expression of the two genes
may become uncorrelated in individual cells because of intrinsic noise (left), giving rise to a
population in which some cells express more of one fluorescent protein than the other.

Fig. 2. Noise in E. coli. CFP and YFP fluorescence images were combined in the green and red channels,
respectively. (A) In strain RP22, with promoters repressed by the wild-type lacI gene, red and green
indicate significant amounts of intrinsic noise. (B) RP22 grown in the presence of lac inducer, 2 mM IPTG.
Both fluorescent proteins are expressed at higher levels and the cells exhibit less noise. (C) As in (B),
except the recA gene has been deleted, increasing intrinsic noise. (D) Another wild-type strain, MG22,
shows noise characteristics similar to those of RP22. (E) Expression levels and noise in unrepressed lacI–
strain M22 are similar to those in lacI# strains induced with IPTG (B). (F) M22 cells regulated by the
Repressilator (16), an oscillatory network that amplifies intrinsic noise.
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recA null strain: very noisy!

is that remaining part of the total noise arising
from the discrete nature of the biochemical
process of gene expression. No matter how
accurately the levels of regulatory proteins
are controlled, intrinsic noise fundamentally
limits the precision of gene regulation.

Operationally, intrinsic noise for a given
gene may be defined as the extent to which
the activities of two identical copies of that
gene, in the same intracellular environment,
fail to correlate (Fig. 1, A and B). Therefore,
we built strains of Escherichia coli, incorpo-
rating the distinguishable cyan (cfp) and yel-
low (yfp) alleles of green fluorescent protein
in the chromosome. In each strain, the two
reporter genes were controlled by identical
promoters. To avoid systematic differences in
copy number, we integrated the genes at loci
equidistant from, and on opposite sides of,
the origin of replication (fig. S1). The two
fluorescent proteins exhibited statistically
equivalent intensity distributions and thus
displayed the necessary independence and
equivalence to detect noise (7 ).

For measurement, cells were grown in LB
medium and photographed through cfp and yfp
fluorescence filter sets and in phase contrast
(Fig. 2) (7). A computerized image analysis
system identified cells and quantified their
mean fluorescent intensities. Both intrinsic and
extrinsic noise could be determined from plots
of CFP versus YFP fluorescence intensity in
individual cells (Fig. 3A) (7). The value of !int

indicates the mean relative difference in fluo-
rescence intensity of the two reporter proteins
in the same cell; for instance, if !int " 0.25,
then the two colors typically differ by about
25%. Because !int and !ext make orthogonal
contributions to the total noise, !tot, the three
noise values satisfy the relation !int

2 # !ext
2 "

!tot
2 (7, 8). Measurements of these variables for

various strains and conditions are presented in
Table 1.

To determine the importance of noise in
vivo, we began with the least noisy gene ex-
pression conditions obtainable without feed-
back: strong constitutive promoters driving the
expression of stable proteins. Specifically, we
constructed strains incorporating artificial lac-
repressible promoters (9) in lac– strain back-
grounds, in which the lac repressor gene, lacI, is
deleted. We obtained low noise levels (!int $
0.05) and low cell-cell variation overall (!tot $
0.08) in these strains (Fig. 2E). We obtained
similar results in another strain incorporating
two copies of the somewhat stronger promoter
%PR (Table 1). These results indicate (i) that
constitutive gene expression can be remarkably
uniform under some conditions, and (ii) that
this low noise state does not strictly depend on
a particular promoter sequence.

Few natural E. coli genes are transcribed
as strongly as these phage-derived promot-
ers (10). To see how much noise there is at
lower rates of transcription, we moved the

reporters into several wild-type (lacI#) E.
coli strains, where they produced only 3 to
6% as much protein. Under these condi-
tions, both intrinsic and extrinsic noise in-
creased by a factor of &5 (Fig. 2, A and D,
and Table 1). The effect was reversible:
Addition of saturating amounts of isopro-
pyl '-D-thiogalactopyranoside (IPTG),
which binds and inactivates the lac repres-
sor, restored noise (both !int and !ext) and
amounts of fluorescent protein expression
to their approximate values in lac– strains
(Fig. 2B). Thus, the noise increase found in
wild-type strains can be attributed directly

to the activity of LacI and the correspond-
ing reduction of transcription rate. LacI
affects extrinsic noise as well, increasing it
by a factor of &5, to &0.3. This change
indicates the presence of cell-cell variation
in LacI expression (8, 11).

Models of stochastic gene expression pre-
dict that intrinsic noise should increase as the
amount of transcript decreases (8, 12). To more
effectively repress the reporter genes, we intro-
duced a plasmid constitutively expressing the
lac repressor (7) into strains otherwise deleted
for lacI. We added different amounts of IPTG
to growing cultures (Fig. 3, B and C). Intrinsic

Fig. 1. Intrinsic and extrinsic
noise can be measured and
distinguished with two genes
(cfp, shown in green; yfp,
shown in red) controlled by
identical regulatory sequenc-
es. Cells with the same
amount of each protein ap-
pear yellow, whereas cells ex-
pressing more of one fluores-
cent protein than the other
appear red or green. (A) In
the absence of intrinsic noise,
the two fluorescent proteins
fluctuate in a correlated fash-
ion over time in a single cell
(left). Thus, in a population,
each cell will have the same
amount of both proteins, al-
though that amount will dif-
fer from cell to cell because
of extrinsic noise (right). (B)
Expression of the two genes
may become uncorrelated in individual cells because of intrinsic noise (left), giving rise to a
population in which some cells express more of one fluorescent protein than the other.

Fig. 2. Noise in E. coli. CFP and YFP fluorescence images were combined in the green and red channels,
respectively. (A) In strain RP22, with promoters repressed by the wild-type lacI gene, red and green
indicate significant amounts of intrinsic noise. (B) RP22 grown in the presence of lac inducer, 2 mM IPTG.
Both fluorescent proteins are expressed at higher levels and the cells exhibit less noise. (C) As in (B),
except the recA gene has been deleted, increasing intrinsic noise. (D) Another wild-type strain, MG22,
shows noise characteristics similar to those of RP22. (E) Expression levels and noise in unrepressed lacI–
strain M22 are similar to those in lacI# strains induced with IPTG (B). (F) M22 cells regulated by the
Repressilator (16), an oscillatory network that amplifies intrinsic noise.
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- Noise in E. Coli - 
• very strong promoter
• scilenced repressor

noise was much larger in the presence of the
LacI plasmid because of reduced transcription
rate, but it fell substantially as IPTG was
added. !int is expected to decrease as !int

2 "
(c1/m) # c2, where m is the fluorescence
intensity of the cell (assumed to be propor-
tional to the average number of transcripts),
and c1 and c2 are constants given by the
microscopic parameters (7 ). This form fits

the data, with strain D22 exhibiting higher
amounts of intrinsic noise than M22 at all
levels of expression (Fig. 3, B and C).

The extrinsic noise, !ext, behaves very dif-
ferently as a function of IPTG concentration.
Whereas !int decreases monotonically, !ext dis-
plays a maximum at intermediate rates of tran-
scription. As a result, total cell-cell variability
(!tot) does not uniquely determine intrinsic

noise. The presence of a maximum in !ext may
be explained as a result of cell-cell variation in
the concentration of LacI (13). Interestingly,
!ext is substantially smaller in cells carrying a
chromosomal copy of lacI than it is in cells
carrying a plasmid-borne copy of the gene (at
comparable expression levels; see Table 1 and
Fig. 3). This is consistent with greater variabil-
ity in copy number for the plasmid-borne lacI

Table 1. Measurements of noise in selected strains.

Modification* Strain† Intensity‡ Intrinsic noise, !int§¶
($10%2)

Extrinsic noise, !ext§
($10%2)

Total noise, !tot§
($10%2)

Constitutive (lacI%) M22 1 5.5 (5.1–6) 5.4 (4.8–5.9) 7.7 (7.4–8.1)
JM22 0.88 5.0 (4.6–5.4) 6.1 (5.5–6.7) 7.9 (7.4–8.4)
MRR 1.21 5.1 (4.7–5.4) 5.6 (5.1–6.2) 7.6 (7.2–7.9)

Wild type (lacI#) MG22 0.057 19 (18–21) 32 (29–35) 37 (35–40)
RP22 0.030 25 (22–27) 33 (30–35) 41 (39–43)

Wild type (LacI#), #IPTG RP22 1.00 6.3 (5.8–6.9) 9.8 (9.0–11) 11.7 (11–12.3)
lacI%, Repressilator M22 0.18 12 (11–13) 42 (37–45) 43 (39–47)

MRR 0.16 11 (9.8–12) 57 (52–62) 58 (53–63)
&recA, lacI% D22 0.81 10.5 (9.6–11.4) 4.6 (2.8–5.8) 11.4 (10.8–12.1)

M22&A 0.99 13 (12–15) 2.4 (0–5.3) 13.6 (12.8–14.5)
JM22&A 0.92 14 (11–17) 2.5 (0–7.3) 15 (12–16.4)

&recA, lacI# #IPTG RP22&A 1.22 17 (15–20) 12 (8.8–14) 21 (20–22)

*Repressilator refers to SpectR version of plasmid in (16); #IPTG indicates growth in the presence of 2 mM IPTG. †The following strain backgrounds were used: MC4100 (22) for
M22, MRR, and M22&A; DY331 (23) for D22; JM2.300 (E. coli Genetic Stock Center) for JM22 and JM22&A; MG1655 for MG22; and RP437 (24) for RP22 and RP22&A. Each strain
contains twin PLlacO1 promoters (9), except MRR, which contains twin 'PR promoters (25). ‡Mean CFP value, relative to the intensity of strain M22. §95% confidence limits
are in parentheses; see (7). ¶CFP and YFP are stable in E. coli (26); effective noise levels for unstable proteins would be greater (for example, a doubling of noise level for a protein
half-life of (0.3 cell cycle) (8).

Fig. 3. Quantification of noise. (A) Plot of fluorescence in two strains: one
quiet (M22) and one noisy (D22). Each point represents the mean fluo-
rescence intensities from one cell. Spread of points perpendicular to the
diagonal line on which CFP and YFP intensities are equal corresponds to
intrinsic noise, whereas spread parallel to this line is increased by extrinsic
noise. (B) Noise versus rate of transcription in strain M22 (recA#, lacI–),
with LacI supplied by plasmid pREP4 (7). Fluorescence levels (x axis) are
population means. The rightmost point represents the strain without
pREP4 and therefore is fully induced; its value, set to 1.0, was used to
normalize all fluorescence intensities. IPTG (0 to 2 mM) was added to
cultures and !tot, !int, and !ext were measured. Error bars are 95%
confidence intervals. Dashed line fits !int

2 " (c1/m) # c2, where m )
fluorescence intensity (x axis), c1 ) 7 $ 10%4, and c2 ) 3 $ 10%3. (C)
Noise versus induction level in recA–lacI– strain D22, containing plasmid
pREP4. All notations are as in (B). In the fit, c1 ) 5 $ 10%4 and c2 ) 1 $
10%2.
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Repressor

174

• weak promoter
• WT repressor

• high inducer levels

is that remaining part of the total noise arising
from the discrete nature of the biochemical
process of gene expression. No matter how
accurately the levels of regulatory proteins
are controlled, intrinsic noise fundamentally
limits the precision of gene regulation.

Operationally, intrinsic noise for a given
gene may be defined as the extent to which
the activities of two identical copies of that
gene, in the same intracellular environment,
fail to correlate (Fig. 1, A and B). Therefore,
we built strains of Escherichia coli, incorpo-
rating the distinguishable cyan (cfp) and yel-
low (yfp) alleles of green fluorescent protein
in the chromosome. In each strain, the two
reporter genes were controlled by identical
promoters. To avoid systematic differences in
copy number, we integrated the genes at loci
equidistant from, and on opposite sides of,
the origin of replication (fig. S1). The two
fluorescent proteins exhibited statistically
equivalent intensity distributions and thus
displayed the necessary independence and
equivalence to detect noise (7 ).

For measurement, cells were grown in LB
medium and photographed through cfp and yfp
fluorescence filter sets and in phase contrast
(Fig. 2) (7). A computerized image analysis
system identified cells and quantified their
mean fluorescent intensities. Both intrinsic and
extrinsic noise could be determined from plots
of CFP versus YFP fluorescence intensity in
individual cells (Fig. 3A) (7). The value of !int

indicates the mean relative difference in fluo-
rescence intensity of the two reporter proteins
in the same cell; for instance, if !int " 0.25,
then the two colors typically differ by about
25%. Because !int and !ext make orthogonal
contributions to the total noise, !tot, the three
noise values satisfy the relation !int

2 # !ext
2 "

!tot
2 (7, 8). Measurements of these variables for

various strains and conditions are presented in
Table 1.

To determine the importance of noise in
vivo, we began with the least noisy gene ex-
pression conditions obtainable without feed-
back: strong constitutive promoters driving the
expression of stable proteins. Specifically, we
constructed strains incorporating artificial lac-
repressible promoters (9) in lac– strain back-
grounds, in which the lac repressor gene, lacI, is
deleted. We obtained low noise levels (!int $
0.05) and low cell-cell variation overall (!tot $
0.08) in these strains (Fig. 2E). We obtained
similar results in another strain incorporating
two copies of the somewhat stronger promoter
%PR (Table 1). These results indicate (i) that
constitutive gene expression can be remarkably
uniform under some conditions, and (ii) that
this low noise state does not strictly depend on
a particular promoter sequence.

Few natural E. coli genes are transcribed
as strongly as these phage-derived promot-
ers (10). To see how much noise there is at
lower rates of transcription, we moved the

reporters into several wild-type (lacI#) E.
coli strains, where they produced only 3 to
6% as much protein. Under these condi-
tions, both intrinsic and extrinsic noise in-
creased by a factor of &5 (Fig. 2, A and D,
and Table 1). The effect was reversible:
Addition of saturating amounts of isopro-
pyl '-D-thiogalactopyranoside (IPTG),
which binds and inactivates the lac repres-
sor, restored noise (both !int and !ext) and
amounts of fluorescent protein expression
to their approximate values in lac– strains
(Fig. 2B). Thus, the noise increase found in
wild-type strains can be attributed directly

to the activity of LacI and the correspond-
ing reduction of transcription rate. LacI
affects extrinsic noise as well, increasing it
by a factor of &5, to &0.3. This change
indicates the presence of cell-cell variation
in LacI expression (8, 11).

Models of stochastic gene expression pre-
dict that intrinsic noise should increase as the
amount of transcript decreases (8, 12). To more
effectively repress the reporter genes, we intro-
duced a plasmid constitutively expressing the
lac repressor (7) into strains otherwise deleted
for lacI. We added different amounts of IPTG
to growing cultures (Fig. 3, B and C). Intrinsic

Fig. 1. Intrinsic and extrinsic
noise can be measured and
distinguished with two genes
(cfp, shown in green; yfp,
shown in red) controlled by
identical regulatory sequenc-
es. Cells with the same
amount of each protein ap-
pear yellow, whereas cells ex-
pressing more of one fluores-
cent protein than the other
appear red or green. (A) In
the absence of intrinsic noise,
the two fluorescent proteins
fluctuate in a correlated fash-
ion over time in a single cell
(left). Thus, in a population,
each cell will have the same
amount of both proteins, al-
though that amount will dif-
fer from cell to cell because
of extrinsic noise (right). (B)
Expression of the two genes
may become uncorrelated in individual cells because of intrinsic noise (left), giving rise to a
population in which some cells express more of one fluorescent protein than the other.

Fig. 2. Noise in E. coli. CFP and YFP fluorescence images were combined in the green and red channels,
respectively. (A) In strain RP22, with promoters repressed by the wild-type lacI gene, red and green
indicate significant amounts of intrinsic noise. (B) RP22 grown in the presence of lac inducer, 2 mM IPTG.
Both fluorescent proteins are expressed at higher levels and the cells exhibit less noise. (C) As in (B),
except the recA gene has been deleted, increasing intrinsic noise. (D) Another wild-type strain, MG22,
shows noise characteristics similar to those of RP22. (E) Expression levels and noise in unrepressed lacI–
strain M22 are similar to those in lacI# strains induced with IPTG (B). (F) M22 cells regulated by the
Repressilator (16), an oscillatory network that amplifies intrinsic noise.
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We find that the phenotypic noise strength shows a strong
positive correlation with translational efficiency (Fig. 2b,
slope=21.8), in contrast to the weak positive correlation
observed for transcriptional efficiency (Fig. 2c, slope=6.5).
Switching from the ERT27 strain to the ERT25 strain (an
increase in translational efficiency of about 15%; Table 1)
increases the noise strength from 32 to 35 units; the same effect
is achieved only upon doubling transcriptional efficiency (a
100% increase) from the half-induction to the full-induction
level. Experiments involving the control strains, in which tran-
scription rates were altered by mutation rather than by operon
induction, supported the weak correlation between noise
strength and transcriptional efficiency (Fig. 2c inset, slope=7.3).
The differential nature of our measurements (investigating
changes rather than absolute values) makes our results indepen-
dent of the specific properties of the reporter protein, such as
gene locus or folding characteristics. This suggests that

increased translational efficiency will strongly increase the vari-
ation in the expression of any naturally occurring gene.

A stochastic model for the expression of a single gene (Fig. 3a)
predicts that the noise strength (!p

2/"p#) is greater than Poisson-
ian (!p

2/"p#=1) and is simply an increasing function of transla-
tional efficiency12:

Here, b=kP/$R is the average number of proteins synthesized per
mRNA transcript; these proteins are injected into the cytoplasm
in sharp bursts (Fig. 3b). The measured asymmetry between the
noise contributions of transcriptional and translational parame-
ters is consistent with this prediction and provides evidence of

"p# = k  b/$  ,
R P

p
2!

"p#
% 1+b   .
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Fig. 1 Phenotypic noise in a genetically identical bacterial population. a, Histogram showing the result of a typical experiment in which the expression level
of a fluorescent reporter protein is measured in a population of isogenic bacterial cells. Traditional population-averaged measurements would summarize
the entire histogram by its mean value "p#; however, our single-cell measurements show that the expression level varies from cell to cell, with a standard devi-
ation !P. The phenotypic noise strength, defined as the quantity !P

2/"p#, is a measure of the spread of expression levels in a population. The relative standard
deviation !P/"p#, although a more common measure of phenotypic noise, obscures its essential behavior. For instance, the relative standard deviation for a
Poisson distribution is !P/"p#=1/"p#1/2, which decreases as the mean increases; but the noise strength for this distribution, !P

2/"p#=1, is independent of the
mean. In general, the noise strength circumvents the trivial effect of decreased noise with increased mean, and measures deviations from Poisson behavior.
b, Phenotypic noise strength for the four different translational mutants at fixed inducer concentration. Noise strength is clearly dependent on translational
efficiency. c, Phenotypic noise strength for one strain (ERT3) as inducer concentration is varied. The transcriptional efficiency does not significantly affect
noise strength.
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Fig. 2 Biochemical contribution to phenotypic noise. a, Complete experimental data. Each data point is the summarized result of an entire histogram correspond-
ing to a flow cytometer run of a population of typically 104–105 cells. The phenotypic noise strength of the population (z, in arbitrary fluorescence units) is plotted
as a function of transcriptional efficiency (x, depending on the IPTG concentration) and translational efficiency (y, depending on the translational mutant used).
Transcriptional and translational efficiencies are normalized to those of the wildtype ERT25 strain, allowing these parameters to be directly compared. These data
are fitted to a plane of the form z=a0+axx+ayy using a least-square routine, giving a0=7.1 ± 0.9, ax=6.5 ± 0.4, ay=21.8 ± 0.9. The ratio ay/ax=3.4 gives the relative
effect of translational versus transcriptional efficiency on phenotypic noise strength. b,c, For clarity, the three-dimensional data are projected parallel to the fit
plane onto the boundary planes x=1 (b), noise strength as a function of translation, and y=1 (c), noise strength as a function of transcription. The intersection of
the fit plane with each boundary plane is shown as a solid line; dotted lines indicate an interval of 1 s.d. Data in b are summarized separately for each translational
mutant (dark circles with error bars that represent 95% c.i.). Inset in c shows results of control experiments conducted on transcriptional mutants at full induction.
Three strains (ERT51, ERT53 and ERT55) are very similar, both in transcriptional efficiency and in noise strength, suggesting that biochemical noise is determined by
the actual transcription rate rather than by the specific method used to achieve it. The strain ERT57 shows a highly amplified transcriptional efficiency, allowing
reliable estimation of correlations. Data are summarized separately for each transcriptional mutant. A linear fit through these points gives a slope ax’=7.3 ± 0.3,
which is consistent with the slope ax=6.5 ± 0.4 obtained from a.
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the biochemical origin of phenotypic variability (Fig. 3c,d). Phe-
notypic noise in a population is therefore indicative of protein
concentration fluctuations over time in single cells.

Cell-to-cell variation in gene expression and flucuations over
time in single cells have broad implications. Noise is often harm-
ful, as it garbles cell signals, corrupts circadian clocks6 and dis-
rupts the fine-tuned process of development. Cell signaling
pathways13 and developmental switches14 have evolved so as to
minimize the disruptive effect of such fluctuations, in ways that
are only now beginning to be understood. Recently, Becskei and
Serrano reported that variation in gene expression could be
reduced by autoregulation15. We have shown that phenotypic
variation can be controlled by genetic parameters: low transla-
tion rates will lead to reduced fluctuations in protein concentra-
tion. Because our control parameters are general, our results
should be generally applicable. We suggest that several ineffi-
ciently translated regulatory genes (Table 3) have been naturally
selected for their low-noise characteristics, even though efficient
translation is energetically favorable16. For example, the cya gene
of Escherichia coli, whose downstream product cyclic AMP
(cAMP) is involved in several cellular regulatory processes, has a
low translation rate. The unusual and inefficient RBS of cya is
conserved across a variety of Gram-negative bacteria17, perhaps
because it suppresses harmful fluctuations in cAMP levels that
could have highly pleiotropic effects, including cell death18. In
some circumstances, noise can be highly desirable: an organism
could use high translation rates and large concentration fluctua-
tions as a means of creating nongenetic individuality in a popula-
tion19,20. This is seen with the cI gene of !-phage4,21: upon
infection of a host cell, the cI mRNA is transcribed with an effi-
cient RBS upstream of the initiation codon, thus creating a high-

noise state; however, the lysogenic phenotype, once established,
is maintained in a low-noise state (since transcription then
begins at the initiation codon itself, producing inefficiently
translated mRNA4). Our experimental approach of creating low-
noise genes through the use of inefficient RBSs mirrors the struc-
ture of these natural systems. The technique of translational
noise control can be applied in the fast-growing field of artificial
genetic networks22,23. The current capabilities of artificially engi-
neered circuits such as genetic toggle switches24 or ring oscilla-
tors5 are limited by intrinsic noise. New methods of noise
reduction will allow these circuits to mimic the robust behavior
of natural biological systems and will enable their practical appli-
cation in areas such as biocomputation or the construction of
genetic biosensors.

Methods
Strains, growth conditions and media. We placed the gene gfpmut2 under
the control of the Pspac promoter and introduced mutations in the ribo-
some binding site, initiation codon and promoter region of gfpmut2 by
PCR. Mutations were verified by sequencing; spontaneous mutation fre-
quencies were negligible over the timecourse of our experiments. We
digested the PCR products and ligated them into the amyE integration vec-
tor pDR67, which contains a single copy of lacI downstream of the consti-
tutive promoter Ppen. We amplified the resulting recombinant plasmid in
the E. coli AG1111 strain and inserted it into the chromosome of the B. sub-
tilis JH642 strain by double-crossover at the amyE locus. (Cells of E. coli
and B. subtilis were made competent and transformed according to stan-
dard procedures.) The resulting B. subtilis strain contained a single copy of
gfpmut2 under the Pspac promoter and a single copy of lacI under the con-
stitutive Ppen promoter. The Pspac promoter includes a binding site for Lac
repressor, the product of the lacI gene; Pspac is externally inducible by
IPTG, which binds to and inhibits the repressor function of LacI. The con-
centration of IPTG in the growth medium therefore determines the tran-
scriptional efficiency of gfpmut2. Addition of IPTG is not expected to affect
native operon expression in B. subtilis.
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Fig. 3 The burst size effect. a, Modeling single-gene expression. mRNA mole-
cules are transcribed at rate kR from the template DNA strand. Proteins are
translated at a rate kP from each mRNA molecule. Proteins and mRNA degrade
at rates "P and "R, respectively. Degradation into constituents is denoted by a
slashed circle. b, Typically, mRNA is unstable when compared with the protein
product of a gene. During its brief lifetime, however, an mRNA molecule can
inject a large burst of proteins into the cytoplasm. A Monte Carlo timecourse
over a 30 min time interval shows bursts of protein creation of average size
b=kP/"R occurring at average rate kR. The magnitudes of these parameters are
indicated on the figure by bars. The timecourse in b is a magnified section of c.
c,d, Monte Carlo simulations of typical timecourses for protein number. Deter-
ministic timecourses are indicated as solid lines; the corresponding population
histogram is shown to the right of each timecourse. The following examples
both achieve the same mean protein concentration, but with different noise
characteristics. In both cases, "R =0.1 s–1 and "P =0.002 s–1; the burst size b is var-
ied to obtain different noise strengths, whereas the transcript initiation rate kR
is chosen to fix the mean protein number at 50. A gene with low transcription
but high translation rates (c; kR=0.01 s–1, b=10) produces bursts that are large,
variable and infrequent, resulting in strong fluctuations. Conversely, a gene
with high transcription and low translation rates (d, kR=0.1 s–1, b=1) produces
bursts that are small and frequent, causing only weak fluctuations in protein
concentration and producing a smaller phenotypic variation in the population.
Regulation of a two-step process, that of transcription followed by translation,
can therefore be used to independently adjust the mean protein concentra-
tion and the level of phenotypic noise in a bacterial population.

Table 3 • Examples of genes inefficiently
translated in Escherichia coli

Gene Function of gene product

cI regulator of bacteriophage-! OR operator21

cya synthesis of cAMP17

malT regulator of maltose regulon16

nagC regulator of nag regulon26

tetR regulator of tetracycline resistance27

trpR repressor of trp, trpR and aroH operons28
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the biochemical origin of phenotypic variability (Fig. 3c,d). Phe-
notypic noise in a population is therefore indicative of protein
concentration fluctuations over time in single cells.

Cell-to-cell variation in gene expression and flucuations over
time in single cells have broad implications. Noise is often harm-
ful, as it garbles cell signals, corrupts circadian clocks6 and dis-
rupts the fine-tuned process of development. Cell signaling
pathways13 and developmental switches14 have evolved so as to
minimize the disruptive effect of such fluctuations, in ways that
are only now beginning to be understood. Recently, Becskei and
Serrano reported that variation in gene expression could be
reduced by autoregulation15. We have shown that phenotypic
variation can be controlled by genetic parameters: low transla-
tion rates will lead to reduced fluctuations in protein concentra-
tion. Because our control parameters are general, our results
should be generally applicable. We suggest that several ineffi-
ciently translated regulatory genes (Table 3) have been naturally
selected for their low-noise characteristics, even though efficient
translation is energetically favorable16. For example, the cya gene
of Escherichia coli, whose downstream product cyclic AMP
(cAMP) is involved in several cellular regulatory processes, has a
low translation rate. The unusual and inefficient RBS of cya is
conserved across a variety of Gram-negative bacteria17, perhaps
because it suppresses harmful fluctuations in cAMP levels that
could have highly pleiotropic effects, including cell death18. In
some circumstances, noise can be highly desirable: an organism
could use high translation rates and large concentration fluctua-
tions as a means of creating nongenetic individuality in a popula-
tion19,20. This is seen with the cI gene of !-phage4,21: upon
infection of a host cell, the cI mRNA is transcribed with an effi-
cient RBS upstream of the initiation codon, thus creating a high-

noise state; however, the lysogenic phenotype, once established,
is maintained in a low-noise state (since transcription then
begins at the initiation codon itself, producing inefficiently
translated mRNA4). Our experimental approach of creating low-
noise genes through the use of inefficient RBSs mirrors the struc-
ture of these natural systems. The technique of translational
noise control can be applied in the fast-growing field of artificial
genetic networks22,23. The current capabilities of artificially engi-
neered circuits such as genetic toggle switches24 or ring oscilla-
tors5 are limited by intrinsic noise. New methods of noise
reduction will allow these circuits to mimic the robust behavior
of natural biological systems and will enable their practical appli-
cation in areas such as biocomputation or the construction of
genetic biosensors.

Methods
Strains, growth conditions and media. We placed the gene gfpmut2 under
the control of the Pspac promoter and introduced mutations in the ribo-
some binding site, initiation codon and promoter region of gfpmut2 by
PCR. Mutations were verified by sequencing; spontaneous mutation fre-
quencies were negligible over the timecourse of our experiments. We
digested the PCR products and ligated them into the amyE integration vec-
tor pDR67, which contains a single copy of lacI downstream of the consti-
tutive promoter Ppen. We amplified the resulting recombinant plasmid in
the E. coli AG1111 strain and inserted it into the chromosome of the B. sub-
tilis JH642 strain by double-crossover at the amyE locus. (Cells of E. coli
and B. subtilis were made competent and transformed according to stan-
dard procedures.) The resulting B. subtilis strain contained a single copy of
gfpmut2 under the Pspac promoter and a single copy of lacI under the con-
stitutive Ppen promoter. The Pspac promoter includes a binding site for Lac
repressor, the product of the lacI gene; Pspac is externally inducible by
IPTG, which binds to and inhibits the repressor function of LacI. The con-
centration of IPTG in the growth medium therefore determines the tran-
scriptional efficiency of gfpmut2. Addition of IPTG is not expected to affect
native operon expression in B. subtilis.
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Fig. 3 The burst size effect. a, Modeling single-gene expression. mRNA mole-
cules are transcribed at rate kR from the template DNA strand. Proteins are
translated at a rate kP from each mRNA molecule. Proteins and mRNA degrade
at rates "P and "R, respectively. Degradation into constituents is denoted by a
slashed circle. b, Typically, mRNA is unstable when compared with the protein
product of a gene. During its brief lifetime, however, an mRNA molecule can
inject a large burst of proteins into the cytoplasm. A Monte Carlo timecourse
over a 30 min time interval shows bursts of protein creation of average size
b=kP/"R occurring at average rate kR. The magnitudes of these parameters are
indicated on the figure by bars. The timecourse in b is a magnified section of c.
c,d, Monte Carlo simulations of typical timecourses for protein number. Deter-
ministic timecourses are indicated as solid lines; the corresponding population
histogram is shown to the right of each timecourse. The following examples
both achieve the same mean protein concentration, but with different noise
characteristics. In both cases, "R =0.1 s–1 and "P =0.002 s–1; the burst size b is var-
ied to obtain different noise strengths, whereas the transcript initiation rate kR
is chosen to fix the mean protein number at 50. A gene with low transcription
but high translation rates (c; kR=0.01 s–1, b=10) produces bursts that are large,
variable and infrequent, resulting in strong fluctuations. Conversely, a gene
with high transcription and low translation rates (d, kR=0.1 s–1, b=1) produces
bursts that are small and frequent, causing only weak fluctuations in protein
concentration and producing a smaller phenotypic variation in the population.
Regulation of a two-step process, that of transcription followed by translation,
can therefore be used to independently adjust the mean protein concentra-
tion and the level of phenotypic noise in a bacterial population.

Table 3 • Examples of genes inefficiently
translated in Escherichia coli

Gene Function of gene product

cI regulator of bacteriophage-! OR operator21

cya synthesis of cAMP17

malT regulator of maltose regulon16

nagC regulator of nag regulon26

tetR regulator of tetracycline resistance27

trpR repressor of trp, trpR and aroH operons28
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Transcription in eukaryotic cells has been described as quantal1,
with pulses of messenger RNA produced in a probabilistic
manner2,3. This description reflects the inherently stochastic
nature4–9 of gene expression, known to be a major factor in
the heterogeneous response of individual cells within a clonal
population to an inducing stimulus10–16. Here we show in
Saccharomyces cerevisiae that stochasticity (noise) arising
from transcription contributes significantly to the level of hetero-
geneity within a eukaryotic clonal population, in contrast to
observations in prokaryotes15, and that such noise can be modu-
lated at the translational level. We use a stochastic model of
transcription initiation specific to eukaryotes to show that
pulsatile mRNA production, through reinitiation, is crucial for
the dependence of noise on transcriptional efficiency, highlight-
ing a key difference between eukaryotic and prokaryotic sources
of noise. Furthermore, we explore the propagation of noise in a
gene cascade network and demonstrate experimentally that
increased noise in the transcription of a regulatory protein
leads to increased cell–cell variability in the target gene output,
resulting in prolonged bistable expression states. This result has
implications for the role of noise in phenotypic variation and
cellular differentiation.

To explore the effects of transcriptional variation and control on
the level of noise in eukaryotic gene expression, we used both native
and artificial modes of transcriptional regulation in the yeast GAL1
promoter (Fig. 1a). In its natural context, the GAL1 promoter is
activated in response to galactose (in the absence of preferentially
metabolized glucose) through an upstream activation sequence
(UASG) composed of multiple binding sites for the transcriptional
activator Gal4p. Like many eukaryotic activators17, Gal4p acts by
recruiting protein complexes involved in chromatin remodelling
and the ordered assembly of a transcription preinitiation com-
plex18,19. Because Gal4p is a galactose-dependent transcriptional
activator, activation-based expression from the GAL1 promoter is
effectively modulated with galactose. As a second mode of tran-
scriptional control, distinct from the native complexity of the
yeast galactose-utilization pathway, we constructed an artificial,
Tet-responsive GAL1 promoter (PGAL1*) by inserting tandem tet
operators (2£tetO2) downstream of the GAL1 TATA box. In con-
trast to Gal4p-mediated activation, bound Tet repressor (TetR)
might act by sterically hindering the assembly of the transcriptional
machinery, effectively repressing expression from PGAL1*. TetR-
mediated repression can be relieved by the addition of the chemical
inducer anhydrotetracycline (ATc), which binds directly to TetR.
Constitutive expression of TetR therefore allows rheostat-like con-
trol of PGAL1* transcriptional efficiency through the use of varying
levels of ATc. The gene encoding the yeast-enhanced green fluor-
escent protein (yEGFP) was expressed from PGAL1* as a quantifiable
reporter, and fluorescence histograms were obtained from flow
cytometric measurement of similarly sized cells containing chromo-
somally integrated, single genetic copies of each construct.
Transcription from PGAL1* is modulated over a broad dynamic

range by both native and artificial modes of regulation (Fig. 1b),
allowing a direct comparison between galactose- and ATc-mediated

Figure 1 Transcriptional control of PGAL1*. a, TetR, expressed from PGAL10*, represses

expression of yEGFP. Anhydrotetracycline (ATc) and galactose (GAL) are required to

induce yEGFP expression. Transcription terminators (TADH1, TCYC1) are indicated.

b, Dose–response curve of PGAL1* expressing yEGFP to ATc at full galactose induction
(2%; red points), and to galactose at full ATc induction (500 ngml21; blue points). Broken

lines were obtained from stochastic simulations (Box 1). c, Transient response of cells
marked A and B in b, induced with 0.2% galactose and 40 ngml21 ATc, respectively.

Histograms correspond to preinduction (black), and 150min (blue), 290min (red) and

440min (green) after induction.

letters to nature

NATURE |VOL 422 | 10 APRIL 2003 | www.nature.com/nature 633© 2003        Nature  Publishing Group

ATc  

GAL

GAL

ATc  

Noise strength = Variance
Mean

The observed difference between noise signatures for ATc- and
galactose-mediated induction might therefore reflect the different
molecular mechanisms by which galactose and ATc induce promo-
ter activation, as shown by transient graded and binary responses,
respectively (Fig. 1c). To determine whether the qualitative charac-
teristics of the observed noise signatures are specific to PGAL1*, we
engineered a second Tet-responsive promoter by inserting 2£tetO2

into the yeast ADH1 promoter in the same location, relative to the
TATAbox, as in PGAL1*. The engineeredADH1 promoter (PADH1*) is
10-fold weaker than PGAL1* at full ATc induction, but it shows a
non-monotonic transcriptional noise signature similar to those
observed for PGAL1* (Fig. 2a, inset). PADH1* also exhibits transient
bimodality when induced with ATc (not shown), offering further
evidence that themode of transcriptional control can have amarked
effect on the resulting population response.

Recent bacterial studies15,16 have explored the contribution of
transcription to the level of noise in prokaryotic gene expression. It
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the level of noise15, demonstrated by a weak positive correlation
between transcriptional efficiency and noise strength. The non-
monotonic responses to varying levels of transcription exhibited by
eukaryotic cells in the present study (Fig. 2a) contrast sharply with
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Figure 3 Simulations of eukaryotic gene expression noise. a, Correlation between noise
strength and transcriptional efficiency varied with ATc (red curve), galactose (blue curve),

and for constant probability of producing a transcript (green line). Simulations in the

absence of transcriptional reinitiation are shown (broken curves). b, Correlation between
noise strength and translational efficiency for full (solid line, slope ¼ 5.7) and ,28%

(broken line, slope ¼ 33) transcriptional induction. The green line (slope ¼ 4.9) is

obtained when the probability of producing a transcript is constant. c, Correlation between
level of transcription and noise at different model parameter values. The green curves

show variation in the level of transcription through k 1f for low (solid curve, k 1b ¼ 1,

k 2f ¼ 1, y ¼ 0.5) and high (broken curve, k 1b ¼ 1, k 2f ¼ 10, y ¼ 5) extents of

reinitiation. The blue curves show variation in the level of transcription through k 1b for

k 1f ¼ 0.1, k 2f ¼ 10 (solid curve); and through k 2f for k 1f ¼ 0.1, k 1b ¼ 1 (dotted

curve). The level of transcription is reported relative to the highest level of mRNA

theoretically possible. Repressor is absent (k 3f ¼ 0) and RNA polymerase II binds tightly

to the promoter (k 2b ¼ 1).

Figure 2 Effect of transcriptional and translational efficiency on noise strength. Data
points represent measurements taken at.30 h (circles) and.45 h (triangles) of growth.

a, Transcriptional efficiency from PGAL1* is varied with either ATc (red points) or galactose

(blue points). The inset shows noise strength as a function of transcriptional efficiency

(varied by ATc induction) for PADH1*. Fourth-order polynomial fits are included for clarity.

b, Variants yEGFP (green points), yEGFPm1 (orange points) and GFPmut3b (light blue
points) differ only in codon content (CAI ¼ 0.596, 0.384 and 0.183, respectively). Linear

fits to data obtained at full transcriptional induction (solid line, slope ¼ 4.3), and at

,28% (30 ngml21 ATc) transcriptional induction (broken line, slope ¼ 30.2) are shown.
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has a substantial effect when coupled to a noisy transcriptional state
(,28% induction), amplifying transcriptional noise considerably.
This provides additional evidence that the level of gene expression
noise in eukaryotic cells is strongly influenced by transcription, in
contrast to observations in prokaryotic cells15. Strikingly similar
results are produced with the stochastic model (Fig. 3b). The results
in Fig. 2b show that translational efficiency (in particular, codon
usage) can be used to regulate the level of noise in the expression of a
eukaryotic gene; these findings indicate that noise strength is an
important factor to be considered when studying the role of codon
bias in gene expression.
There has been speculation about the effects of a noisy regulatory

input on downstream gene expression7,9,27, and it has been proposed
that important regulatory genes have evolved to minimize noise15.
To determine the extent to which fluctuations in the expression of a
regulatory gene can affect cell–cell variability in the downstream
target, we constructed a simple regulatory cascade (Fig. 4a) inwhich
noise in the expression of the regulator (TetR) can be modulated
independently of the regulated gene (yEGFP). Independent noise
control is feasible because of the differential effect of galactose on
the GAL10 and ADH1 promoters. Specifically, PADH1* expression is
not regulated directly by galactose and the level of noise in
transcription from PADH1* does not change significantly when
galactose is varied (Fig. 4b). The level of noise in TetR (expressed

from PGAL10*) can therefore be varied with galactose independently
of noise in the expression from PADH1*. We set the tunable noise in
TetR expression to either high (0.15% galactose) or low (2%
galactose) (see Fig. 4b), and used ATc to control the regulatory
effect of TetR on PADH1* transcriptional efficiency. Figure 4c shows
that increased noise in TetR expression has a marked effect on the
level of noise in ATc-regulated yEGFP expression, causing a sub-
stantial increase in target gene fluctuations over a broad range of
transcriptional efficiencies.

As described above, ATc-induced expression of yEGFP from
PADH1* results in a transient bimodal response (similar to that of
PGAL1* shown in Fig. 1c), which becomes unimodal when
expression reaches a steady state. By directly tuning the level of
noise in the TetR regulatory protein, independently of other factors
involved in expression from PADH1*, we find that we can directly
affect yEGFP expression state stability, as reflected in the mainten-
ance of a bimodal response. Specifically, a low level of noise in TetR
expression (noise strength,1.3 arbitrary units (AU)) causes yEGFP
expression to exhibit a single, unimodal fluorescence distribution
(Fig. 4d), whereas when the TetR regulatory protein is tuned to a
high noise level (noise strength ,2.7 AU), we observe that yEGFP
exhibits prolonged bistable expression states that persist for the
length of the experiment (Fig. 4e). These results show that the
downstream effects of increased cell–cell variability in a regulatory
protein can have profound phenotypic consequences, drastically
affecting the stability of gene expression states. It was recently shown
that increased noise in the expression of a tumour-suppressor gene
can lead to altered cell phenotypes characterized by distinct mor-
phological changes28. The cascading noise experiments described
above demonstrate a plausible mechanism for such heritable
changes in target gene expression, whereby increased levels of
noise in the expression of a regulatory protein can cause a popu-
lation of isogenic cells to exhibit prolonged bistable expression
states.

We have shown how transcriptional efficiency and the mecha-
nism of transcriptional control relate to noise strength in certain
eukaryotic promoters, providing an important distinction between
sources of noise in prokaryotic and eukaryotic cells. We have also
demonstrated a clear link between codon usage and gene expression
noise. Moreover, we have shown that increased noise in a regulatory
protein can have profound effects on bimodal responses that can be
critical for cellular differentiation and the maintenance of pheno-
typic variation. Together these findings contribute to a greater
understanding of the origins of cell–cell variability and the con-
sequences of such variability in the expression of a regulatory
protein on cell phenotype. Our stochastic model of gene induction
proposes specific mechanisms by which slow transitions between
various states of transcription apparatus assembly and the process
of reinitiation, and also the action of transcriptional activators,
might modulate noise in gene expression. In addition to the
proposed role of activators, the level of noise might involve other
factors, such as the sequence of the promoter itself. The stability of
the complex between transcription factor IIA, TBP and promoter is
dependent on the sequence of the TATA box29, and promoters that
direct reinitiation have consensus TATA elements30. Variation in
TATA box sequence and the use of TATA-less promoters might be
additional mechanisms of noise control, as a high extent of
reinitiation (caused by a stable intermediate promoter complex)
can lead to high noise (see Box 1). All of these mechanisms are
known to be involved in eukaryotic gene expression andmight work
synergistically to control the level of noise. A

Methods
Strains, media and growth
All yeast strains were created by targeted chromosomal integration of shuttle vector
constructs at either the GAL1-10 or the ADH1 locus of S. cerevisiae strain YPH500
(a, ura3-52, lys2-801, ade2-101, trp1D63, his3D200, leu2D1) (Stratagene) or derivatives,

Figure 4 Cascading noise in a gene network and effect on cellular response. a, Diagram
of simple cascading gene network with regulatory input (TetR) and regulated output

(yEGFP). b, Noise strength as a function of galactose for PGAL10* expressing GFPmut3b
(circles) and PADH1* expressing yEGFP (triangles). Conditions of high (0.15% galactose;

green points) and low (2% galactose; blue points) input noise are indicated. GFPmut3b

(CAI ¼ 0.183) is used to estimate the effect of galactose on noise in the expression of tetR

(CAI ¼ 0.115). Error bars are 95% confidence intervals for three independent

measurements at.15 h,.30 h and.45 h induction with galactose. c, Noise in yEGFP
expression as a function of transcriptional efficiency at high (blue points) and low (green

points) levels of input noise. Data points represent day 4 (circles), day 5 (triangles) and

day 7 (squares) measurements. Fourth-order polynomial fits are included for clarity.

d, e, Histograms represent yEGFP fluorescence measurements taken after growth for
1 day (black), 2 days (dark blue), 3 days (red), 4 days (green) and 5 days (light blue). Low

(d) and high (e) levels of TetR input noise cause different phenotypic responses.
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variability for all strains are observed at low to interme-
diate transcriptional activity. However, the peak level
of cell-cell variability decreases for strains with more
severe TATA box mutation. Experiments were also
conducted in which native promoter activation was al-
tered by varying galactose concentration. As presented
in Figure 2C, these data show the same general behavior
as observed for nonnative ATc activation. Namely, pro-
moterswithmutated TATA sequences show lower levels
of variability. These results are in support of a mecha-
nism whereby an altered rate of transition between
active and inactive promoter states, mediated by varia-
tion in the stability of a TBP-containing transcription
scaffold, can have a dramatic effect on phenotypic
variability.

Computational Model of Gene Expression Identifies
Transcriptional Bursting as a Critical
Noise-Mediating Factor
To better conceptualize and understand the phenome-
nological effect of a stable transcription complex and
transcriptional reinitiation on variability in gene expres-
sion, we developed a stochastic model of gene expres-
sion from PGAL1*. Themodel explicitly takes into account
transitions between various states of PGAL1* promoter
occupancy prior to transcription initiation, transcript
elongation, and translation. In the model, five promoter
states are defined by TetR, TBP, and RNA Pol II occu-
pancy (Figure 3A and see Figure S3 in the Supplemental
Data available with this article online), and these are fur-
ther classified based on TBP occupancy as either OFF

Figure 1. Engineered Expression Control and Variants of the GAL1 TATA Box

(A) Engineered TetR control of the GAL1 promoter (Blake et al., 2003). The Tet repressor gene (tetR), expressed from PGAL10*, binds to tandem
tetO2 operators (hatched boxes) inserted downstream of the GAL1 TATA box, repressing expression of the yeast-enhanced green fluorescent
protein gene (yEGFP) from PGAL1*. Addition of anhydrotetracycline (ATc) induces yEGFP expression.
(B) Expression levels of variant TATA strains are shown relative to TA-WT. Relativemean expression levels were determined at full transcriptional
induction (250 ng ml21 ATc, 2% galactose) by averaging yEGFP fluorescence obtained by three independent flow cytometric measurements of
30,000 cells gated based on size. Error bars are standard deviations.

Phenotypic Consequences of Transcriptional Noise
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(TBP unbound) or ON (TBP bound). It is assumed that, in
the presence of galactose, the Gal4 protein is in its ac-
tive form, able to recruit transcription factors such as
SAGA and Mediator to the promoter region. In addition,
TetR protein bound at the promoter is assumed to pre-
vent RNA Pol II binding, but not TBP binding. If the bind-
ing of TetR and TBP were exclusive, the model predicts
thatmutations to the TATA boxwould cause a horizontal
shift of the ATc dose-response curve. This was not ob-
served experimentally (see Figure 2A), so it was as-
sumed that the binding of TetR and TBP was not exclu-
sive (see also Supplemental Data, Section 4).

Mass action kinetics were used to determine the
probability that PGAL1* will reside in each of the various
states of promoter occupancy and to reproduce the ob-
served experimental effects of increasingly severe TATA
box mutation on the ATc dose response (Figure 3B).
TATA box mutations decrease TBP-DNA complex sta-
bility, and this was modeled by increasing the dissocia-
tion rate of TBP from the TATAbox (Figure 3A, parameter
gB), leaving all other parameters unchanged. Impor-
tantly, model simulations in which only the TBP-TATA
association rate was changed in response to TATA box
mutation showed a decrease in mean expression, but
not the corresponding decrease in noise observed in
Figure 2B (see Supplemental Data, Section 12). The re-
sult of these simulations, together with previous ex-
perimental work showing that mutations to the TATA
box affect the rate of TBP dissociation at least an order
of magnitude more than the rate of TBP association
(Hoopes et al., 1998), was used to constrain our model.

To illustrate how random transitions between these
states contribute to fluctuations in protein number, sto-
chastic simulations (Gillespie, 1977) were run until the
system reached steady state at various inducer concen-
trations (Figure 3B). At low ATc concentration, PGAL1* re-
sides with high probability in a repressed state, with
TetR bound, resulting in low protein levels and low levels
of noise in protein production. In contrast, at high in-
ducer concentration, TetR is rarely bound, and tran-
scription is frequently initiated, resulting in high protein
levels and low levels of noise in protein output
(Figure 3C). At intermediate levels of induction, however,
the promoter is more likely to transition between an OFF
(TBP-unbound) state and an ON (TBP-bound) state. A
stable transcription scaffold increases the likelihood
that, once in the ON state, the promoter will remain ac-
tive, repeatedly recruiting RNA Pol II in the course of
transcriptional reinitiation and production of new tran-
scripts. As shown in Figure 3C, decreased TBP dissoci-
ation (low gB) results in higher levels of noise at the pro-
tein level, in agreement with experimental observations
(Figure 2B). TATA box mutations that result in high gB,
or a more unstable TBP-DNA complex, promote shorter
bursts (eventually becoming single transcription initia-
tion events) and lower levels of noise at the protein level
(see Supplemental Data, Sections 8–10).

Figure 2. PGAL1* Transcriptional Activity and Population Heteroge-
neity at Varying Levels of ATc and Galactose

(A) Normalized dose response of select PGAL1* TATA variants to ATc.
Data for each strain are individually normalized to conditions of no
induction (0 ng/ml ATc, 2% galactose) and full induction (250 ng
ml21 ATc, 2% galactose). Data points represent normalized means
obtained from 30,000 individual cell measurements, and error bars
are 95% confidence intervals. Dose-response curve similarity
among variants is reflected in nearly identical Hill coefficients
(7.4 6 0.5). (Inset) Prenormalized fluorescence data (a.u.) for each
strain are plotted as a function of ATc concentration (ng ml21); error
bars are 95% confidence intervals.
(B) Population heterogeneity of select PGAL1* variants as a function of
ATc. Data points represent noise values (standard deviation/mean)
calculated from the prenormalized data in (A), and error bars are
95% confidence intervals. A strain lacking the yEGFP gene was
also included in the analysis (dotted line) and represents the contri-

bution from cellular autofluorescence to variability measurements.
(C) Population heterogeneity as a function of galactose concentra-
tion for strains in (A). Data points and error bars are calculated
from 30,000 individual cells as in (B). (Inset) Mean fluorescence
(a.u.) for each strain is plotted as a function of galactose concentra-
tion (percent galactose); error bars are 95% confidence intervals.
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• Sronger, noisy: bursts

• Weaker, steady: few bursts

Antibiotic 
resistance

the expression of a stress response gene affects popu-
lation survival upon exposure to cellular stress.
The stochastic model was used to identify conditions

in which TA-WT and TA-sev exhibited similar levels of
gene expression but differing levels of cell-cell variabil-
ity, thereby allowing meaningful study of the effects of
such heterogeneity on population viability. By computa-
tionally varying ATc concentrations while calculating
both mean and coefficient of variation (CV) for TA-WT
(gB = 0.05) and TA-sev (gB = 1.0), ATc concentrations of
20 and 25 ng ml21 were identified as appropriate con-
centrations for TA-WT and TA-sev1 induction levels, re-
spectively (Figure 6A). Experimental data (Figure 6B)
confirm that at these steady-state induction levels,
TA-WT and TA-sev1 strains exhibit similar mean levels
of expression (TA-WT mean = 101 a.u. and TA-sev1
mean = 100 a.u.) but different levels of cell-cell variability
(TA-WT CV = 1.2 and TA-sev1 CV = 0.6).
Model simulations predict that, although these two

populations have similar mean expression levels, their
ability to survive when the expressed protein is neces-
sary for response to a stress agent should differ. Cell
death was modeled simply by assuming that individual
cells perish unless a stress-response protein is ex-
pressed above a threshold level that is proportional to
the concentration of the stress agent. Lower concentra-
tions of stress agent correspond to lower thresholds re-
quired for survival and, therefore, a greater percent via-
bility across the population. For the sake of simplicity,
our model included only two phenotypic outcomes: sur-
vival and death. The effect of stresswas to divide the cell
population into two subpopulations corresponding to
these phenotypes based on their protein expression
levels. By using simulated distributions as presented in
Figure 6A, the model was used to predict cell survival
for TA-WT and TA-sev populations as a function of
stress level (Figure 6C). Interestingly, greater levels of
cell-cell heterogeneity are predicted to be disadvanta-
geous at low levels of stress. The converse is true, how-
ever, at high stress levels in which increased cell-cell
variability results in a clear fitness benefit.
To test this prediction, TA-WT and TA-sev1 strains

were induced to steady-state levels of ZeoR expression
with 20 and 25 ng ml21 ATc, respectively, where yEGFP
expression data indicate that mean protein output is

similar but expression variability differs. These strains
were then exposed to varying levels of Zeocin, and
growth measurements were taken at varying intervals.
After 28 hr growth, the experimental observations corre-
late remarkablywellwithourmodel predictions, showing
increased viability for the population with greater cell-
cell variability at high levels of Zeocin antibiotic (Fig-
ure 6D). In addition, experimental results show that in-
creased cell-cell variability can be less advantageous
at low levels of stress, aspredictedby themodel. This re-
sult likely reflects the fact that a population with a high
level of cell-cell variability (e.g., TA-WT) will have a
greater number of cells below the protein production
threshold necessary for survival than a population with
a low level of cell-cell variability (e.g., TA-sev1). However,
as stress levels increase and the threshold shifts, the
TA-WT cell population will have a greater number of
cells above the threshold than the TA-sev1 population,
resulting in a survival advantage (Figures 6C and 6D).

These results demonstrate that a particular genetic
component, the TATA box, can dramatically influence
the level of noise in gene expression and that there is
a distinct phenotypic benefit to the resulting increased
cell-cell variability of TATA-containing promoters. These
data support the claim that noise in gene expression can
be beneficial when the expressed gene is required for
stress response. Two populations responding with sim-
ilar mean expression levels exhibit drastically different
stress responses based on differing levels of cell-cell
variability. These computational and experimental re-
sults describe a mechanism whereby TATA-containing
promoters can enable rapid individual cell responses
in the transient and increased cell-cell variability at
steady state through the stochastic process of tran-
scriptional bursting. Both the rapid response and in-
creased cell-cell variability confer a clear benefit in the
face of an environmental stress.

Recent global analyses of the significance of TATA
box sequence in S. cerevisiae genes revealed that
TATA-containing genes are associated with inducible
responses to stress-related factors, in contrast to
TATA-less genes, which are primarily associated with
constitutive housekeeping function (Basehoar et al.,
2004; Huisinga and Pugh, 2004; Zanton and Pugh,
2004; Newman et al., 2006; Tirosh et al., 2006). These

Figure 5. Effect of Promoter Response Time
on Culture Growth after Exposure to Zeocin
Antibiotic

(A) ZeoR-expressing TA-WT culture growth in
varying conditions of Zeocin antibiotic and
ATc induction of ZeoR. Cultures grown for
18 hr in the presence (o/n) or absence of
ATc were diluted 1:100 into microplate wells
containing media with (1) no Zeocin and no
ATc, (2) 1.5 mg ml21 Zeocin and no ATc, or
(3) 1.5 mg ml Zeocin and 100 ng ml21 ATc,
and OD600 was measured over a period of
approximately 40 hr. Cells preinduced with
ATc (o/n) and exposed to condition 3 (solid
red curve) showed an increase in OD600 in a

manner similar to cells grown in the absence of ATc and Zeocin (condition 1, blue curve). Cells grown in the absence of ATc that were simulta-
neously exposed to ATc and Zeocin (condition 3, dashed red curve) were able to propagate, while those exposed only to Zeocin (condition 2,
black curve) did not show any increase in OD600.
(B) ZeoR-expressing TA-sev1 strain growth in conditions as described in (A). No increase in OD600 is detected after cells grown in the absence of
ATc were simultaneously exposed to 100 ng ml21 ATc and 1.5 mg ml21 Zeocin (dashed red curve).

Phenotypic Consequences of Transcriptional Noise
861



4. The logic of genetic regulation



 - Boolean logic from cooperative 
binding - 

of bacterial TFs (14),Ki can typically be tuned across and beyond
the relevant range of cellular protein concentrations (e.g.,Ki !
1–10,000 nM) individually for each site i.

2. A weak glue-like interaction between two proteins (TFs and!or
RNAP) is assumed possible if the relative placements of the
DNA-binding sites allow for direct contact of appropriate re-
gions of the proteins. On the molecular level, weak glue-like
interactions can occur, for instance, via contact of hydrophobic
patches (15). For a number of well studied proteins (see refs. 10,
12, and 16 and references therein), such interactions fall within
the range of !1–4 kcal!mol. Here we assume for simplicity the
same interaction energy for all protein pairs and choose a
conservative value of Eint " #2 kcal!mol. A repulsive interac-
tion (Eint " $%) between two proteins results if their respective
binding sites overlap. No effective interaction (Eint " 0) is
obtained when the binding sites for the two proteins are on
opposite sides of the DNA or at an appropriate distance such
that they will not bind to their sites and contact each other
simultaneously. Quantifying the interaction between two pro-
teins bound to two sites i and j by a cooperativity factor !i,j "
e#Eint/RT, where RT ! 0.6 kcal!mol, we see that interaction
between each pair of sites can be selected from the values!i,j "
{0, 1, !20} just by arranging the positions of the binding sites in
the regulatory region.

Given the binding strengths Ki and the cooperativity factors !i,j
for all the DNA sites, the binding probabilityP of the RNAP to the
promoter can be computed straightforwardly (see refs. 11 and 12
and Supporting Text). The task of implementing various regulatory
functions is then reduced to arranging the binding sites in the
cis-regulatory region such that the interaction parametersKi and !i,j
produce the desired P for the various TF concentrations.

Cis-Regulatory Implementations. To illustrate how different regula-
tory functions can be implemented by using the model described
above, let us consider the response of g2 in Fig. 2a, which corre-
sponds to the logic function AND, and the implementation of which
is referred to as the AND gate. It can be obtained by choosing weak
binding sites for both A and B and placing them adjacent to each
other (see Fig. 2a) such that each TF alone cannot bind to its site,
but when both are present binding occurs with the help of the
additional cooperative interaction. This is quantitatively verified by
the full response characteristics P([A],[B]) plotted across the range
of physiological TF concentrations (!1–1,000 nM). Similarly, one
can implement the responses for the genesg3 and g4 corresponding
to the OR and NAND gates (see Fig. 2 b and c). The maximal fold
change obtained is !10 for all three logic gates. (With stronger
interaction energy Eint or by using multiple binding sites, larger fold
changes can be readily obtained for these and more complex logic
gates; here we are concerned primarily with obtaining the qualita-

tive behaviors rather than their optimization.) Examples of these
control functions can be found in natural and artificially constructed
regulatory systems in bacteria (17–19), and the basic molecular
mechanisms of their operations are similar to those described
above.

The responses for g5 and g6 exemplify an increased level of
complexity: The effect of a TF is not always activating or repressing
(as is the case for g1–g4) but depends on the state of the other TF.
For example, protein B activates g5 in the absence of protein A but
represses g5 in the presence of A, making the gene ON if either one
but not both of the TFs are activated; this control is known
commonly as the ‘‘exclusive-or’’ (XOR) gate. Analogous to elec-
tronic circuit design,g5 could be achieved via a ‘‘gene cascade,’’ e.g.,
by applying the gene products ofg3 and g4 on g2 (see Fig. 3a). More
simply, the regulatory regions of g3 and g4 could be combined into
a single region as shown in Fig. 3b, which achieves the desired
characteristics without any intermediate genes, thereby avoiding
many potential problems associated with their expressions (e.g.,
time delay and stochasticity). The cis-regulatory implementation of
the XOR gate is not unique, e.g., an alternative design uses two
promoters positioned sequentially in the regulatory region, with
one promoter functional only when B is activated and A is not (as
in Fig. 1b) and vice versa for the other (see Fig. 3c).

The above example illustrates a fundamental difference in the
style of computation between a gene-regulatory network and an
electronic circuit: An electronic circuit features a ‘‘deep’’ architec-
ture with many layers of cascades to take advantage of the vast
number of simple but fast nodes. Despite what has been suggested
previously (20), we believe a gene-regulatory network cannot afford
many stages of cascades because of the slowness and limited
number of nodes but can adopt a ‘‘broad’’ architecture integrating
complex computations such as the XOR gate into a single node to
overcome the slowness. The speed constraint is especially signifi-

Fig. 1. (a) Some possible gene responses (ON or OFF) according to the specific
activation patterns of two TFs, A and B, as denoted by their cellular concen-
trations (high or low). The logical equivalents of these gene responses are
listed above each column. (b) The cis-regulatory implementation for the
response of gene g1, as adapted from the E. coli lac operon. To achieve
the desired effects, the operator sites need to be strong (filled boxes)
and the promoter needs to be weak (open box). In this and subsequent
cis-regulatory constructs, we use the offset, overlapping boxes to indicate
mutual repression and the dashed lines to indicate cooperative interaction.
The logic function that this system implements is indicated above the con-
struct, with the overline denoting the ‘‘inverse’’ of A, or NOT A.

Fig. 2. Cis-regulatory constructs and response characteristics of the AND (a),
OR (b), and NAND (c) gates. Filled, hatched, and open boxes denote strong,
moderate, and weak binding sites, respectively. Dashed lines indicate coop-
erative interaction with !i,j " 20, and overlapping boxes indicate repulsive
interaction with !i,j " 0. Plotted to the right of each construct is the fold
change in RNAP-binding probability, &P ' P([A], [B])!Pmin for typical cellular
TF concentrations [A] and [B] (in nM). See Supporting Text for the actual forms
of P([A], [B]) and the strengths of the binding sites. Qualitative features of
these plots are insensitive to the precise values of the parameters used.
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of bacterial TFs (14),Ki can typically be tuned across and beyond
the relevant range of cellular protein concentrations (e.g.,Ki !
1–10,000 nM) individually for each site i.

2. A weak glue-like interaction between two proteins (TFs and!or
RNAP) is assumed possible if the relative placements of the
DNA-binding sites allow for direct contact of appropriate re-
gions of the proteins. On the molecular level, weak glue-like
interactions can occur, for instance, via contact of hydrophobic
patches (15). For a number of well studied proteins (see refs. 10,
12, and 16 and references therein), such interactions fall within
the range of !1–4 kcal!mol. Here we assume for simplicity the
same interaction energy for all protein pairs and choose a
conservative value of Eint " #2 kcal!mol. A repulsive interac-
tion (Eint " $%) between two proteins results if their respective
binding sites overlap. No effective interaction (Eint " 0) is
obtained when the binding sites for the two proteins are on
opposite sides of the DNA or at an appropriate distance such
that they will not bind to their sites and contact each other
simultaneously. Quantifying the interaction between two pro-
teins bound to two sites i and j by a cooperativity factor !i,j "
e#Eint/RT, where RT ! 0.6 kcal!mol, we see that interaction
between each pair of sites can be selected from the values!i,j "
{0, 1, !20} just by arranging the positions of the binding sites in
the regulatory region.

Given the binding strengths Ki and the cooperativity factors !i,j
for all the DNA sites, the binding probabilityP of the RNAP to the
promoter can be computed straightforwardly (see refs. 11 and 12
and Supporting Text). The task of implementing various regulatory
functions is then reduced to arranging the binding sites in the
cis-regulatory region such that the interaction parametersKi and !i,j
produce the desired P for the various TF concentrations.

Cis-Regulatory Implementations. To illustrate how different regula-
tory functions can be implemented by using the model described
above, let us consider the response of g2 in Fig. 2a, which corre-
sponds to the logic function AND, and the implementation of which
is referred to as the AND gate. It can be obtained by choosing weak
binding sites for both A and B and placing them adjacent to each
other (see Fig. 2a) such that each TF alone cannot bind to its site,
but when both are present binding occurs with the help of the
additional cooperative interaction. This is quantitatively verified by
the full response characteristics P([A],[B]) plotted across the range
of physiological TF concentrations (!1–1,000 nM). Similarly, one
can implement the responses for the genesg3 and g4 corresponding
to the OR and NAND gates (see Fig. 2 b and c). The maximal fold
change obtained is !10 for all three logic gates. (With stronger
interaction energy Eint or by using multiple binding sites, larger fold
changes can be readily obtained for these and more complex logic
gates; here we are concerned primarily with obtaining the qualita-

tive behaviors rather than their optimization.) Examples of these
control functions can be found in natural and artificially constructed
regulatory systems in bacteria (17–19), and the basic molecular
mechanisms of their operations are similar to those described
above.

The responses for g5 and g6 exemplify an increased level of
complexity: The effect of a TF is not always activating or repressing
(as is the case for g1–g4) but depends on the state of the other TF.
For example, protein B activates g5 in the absence of protein A but
represses g5 in the presence of A, making the gene ON if either one
but not both of the TFs are activated; this control is known
commonly as the ‘‘exclusive-or’’ (XOR) gate. Analogous to elec-
tronic circuit design,g5 could be achieved via a ‘‘gene cascade,’’ e.g.,
by applying the gene products ofg3 and g4 on g2 (see Fig. 3a). More
simply, the regulatory regions of g3 and g4 could be combined into
a single region as shown in Fig. 3b, which achieves the desired
characteristics without any intermediate genes, thereby avoiding
many potential problems associated with their expressions (e.g.,
time delay and stochasticity). The cis-regulatory implementation of
the XOR gate is not unique, e.g., an alternative design uses two
promoters positioned sequentially in the regulatory region, with
one promoter functional only when B is activated and A is not (as
in Fig. 1b) and vice versa for the other (see Fig. 3c).

The above example illustrates a fundamental difference in the
style of computation between a gene-regulatory network and an
electronic circuit: An electronic circuit features a ‘‘deep’’ architec-
ture with many layers of cascades to take advantage of the vast
number of simple but fast nodes. Despite what has been suggested
previously (20), we believe a gene-regulatory network cannot afford
many stages of cascades because of the slowness and limited
number of nodes but can adopt a ‘‘broad’’ architecture integrating
complex computations such as the XOR gate into a single node to
overcome the slowness. The speed constraint is especially signifi-

Fig. 1. (a) Some possible gene responses (ON or OFF) according to the specific
activation patterns of two TFs, A and B, as denoted by their cellular concen-
trations (high or low). The logical equivalents of these gene responses are
listed above each column. (b) The cis-regulatory implementation for the
response of gene g1, as adapted from the E. coli lac operon. To achieve
the desired effects, the operator sites need to be strong (filled boxes)
and the promoter needs to be weak (open box). In this and subsequent
cis-regulatory constructs, we use the offset, overlapping boxes to indicate
mutual repression and the dashed lines to indicate cooperative interaction.
The logic function that this system implements is indicated above the con-
struct, with the overline denoting the ‘‘inverse’’ of A, or NOT A.

Fig. 2. Cis-regulatory constructs and response characteristics of the AND (a),
OR (b), and NAND (c) gates. Filled, hatched, and open boxes denote strong,
moderate, and weak binding sites, respectively. Dashed lines indicate coop-
erative interaction with !i,j " 20, and overlapping boxes indicate repulsive
interaction with !i,j " 0. Plotted to the right of each construct is the fold
change in RNAP-binding probability, &P ' P([A], [B])!Pmin for typical cellular
TF concentrations [A] and [B] (in nM). See Supporting Text for the actual forms
of P([A], [B]) and the strengths of the binding sites. Qualitative features of
these plots are insensitive to the precise values of the parameters used.
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of bacterial TFs (14),Ki can typically be tuned across and beyond
the relevant range of cellular protein concentrations (e.g.,Ki !
1–10,000 nM) individually for each site i.

2. A weak glue-like interaction between two proteins (TFs and!or
RNAP) is assumed possible if the relative placements of the
DNA-binding sites allow for direct contact of appropriate re-
gions of the proteins. On the molecular level, weak glue-like
interactions can occur, for instance, via contact of hydrophobic
patches (15). For a number of well studied proteins (see refs. 10,
12, and 16 and references therein), such interactions fall within
the range of !1–4 kcal!mol. Here we assume for simplicity the
same interaction energy for all protein pairs and choose a
conservative value of Eint " #2 kcal!mol. A repulsive interac-
tion (Eint " $%) between two proteins results if their respective
binding sites overlap. No effective interaction (Eint " 0) is
obtained when the binding sites for the two proteins are on
opposite sides of the DNA or at an appropriate distance such
that they will not bind to their sites and contact each other
simultaneously. Quantifying the interaction between two pro-
teins bound to two sites i and j by a cooperativity factor !i,j "
e#Eint/RT, where RT ! 0.6 kcal!mol, we see that interaction
between each pair of sites can be selected from the values!i,j "
{0, 1, !20} just by arranging the positions of the binding sites in
the regulatory region.

Given the binding strengths Ki and the cooperativity factors !i,j
for all the DNA sites, the binding probabilityP of the RNAP to the
promoter can be computed straightforwardly (see refs. 11 and 12
and Supporting Text). The task of implementing various regulatory
functions is then reduced to arranging the binding sites in the
cis-regulatory region such that the interaction parametersKi and !i,j
produce the desired P for the various TF concentrations.

Cis-Regulatory Implementations. To illustrate how different regula-
tory functions can be implemented by using the model described
above, let us consider the response of g2 in Fig. 2a, which corre-
sponds to the logic function AND, and the implementation of which
is referred to as the AND gate. It can be obtained by choosing weak
binding sites for both A and B and placing them adjacent to each
other (see Fig. 2a) such that each TF alone cannot bind to its site,
but when both are present binding occurs with the help of the
additional cooperative interaction. This is quantitatively verified by
the full response characteristics P([A],[B]) plotted across the range
of physiological TF concentrations (!1–1,000 nM). Similarly, one
can implement the responses for the genesg3 and g4 corresponding
to the OR and NAND gates (see Fig. 2 b and c). The maximal fold
change obtained is !10 for all three logic gates. (With stronger
interaction energy Eint or by using multiple binding sites, larger fold
changes can be readily obtained for these and more complex logic
gates; here we are concerned primarily with obtaining the qualita-

tive behaviors rather than their optimization.) Examples of these
control functions can be found in natural and artificially constructed
regulatory systems in bacteria (17–19), and the basic molecular
mechanisms of their operations are similar to those described
above.

The responses for g5 and g6 exemplify an increased level of
complexity: The effect of a TF is not always activating or repressing
(as is the case for g1–g4) but depends on the state of the other TF.
For example, protein B activates g5 in the absence of protein A but
represses g5 in the presence of A, making the gene ON if either one
but not both of the TFs are activated; this control is known
commonly as the ‘‘exclusive-or’’ (XOR) gate. Analogous to elec-
tronic circuit design,g5 could be achieved via a ‘‘gene cascade,’’ e.g.,
by applying the gene products ofg3 and g4 on g2 (see Fig. 3a). More
simply, the regulatory regions of g3 and g4 could be combined into
a single region as shown in Fig. 3b, which achieves the desired
characteristics without any intermediate genes, thereby avoiding
many potential problems associated with their expressions (e.g.,
time delay and stochasticity). The cis-regulatory implementation of
the XOR gate is not unique, e.g., an alternative design uses two
promoters positioned sequentially in the regulatory region, with
one promoter functional only when B is activated and A is not (as
in Fig. 1b) and vice versa for the other (see Fig. 3c).

The above example illustrates a fundamental difference in the
style of computation between a gene-regulatory network and an
electronic circuit: An electronic circuit features a ‘‘deep’’ architec-
ture with many layers of cascades to take advantage of the vast
number of simple but fast nodes. Despite what has been suggested
previously (20), we believe a gene-regulatory network cannot afford
many stages of cascades because of the slowness and limited
number of nodes but can adopt a ‘‘broad’’ architecture integrating
complex computations such as the XOR gate into a single node to
overcome the slowness. The speed constraint is especially signifi-

Fig. 1. (a) Some possible gene responses (ON or OFF) according to the specific
activation patterns of two TFs, A and B, as denoted by their cellular concen-
trations (high or low). The logical equivalents of these gene responses are
listed above each column. (b) The cis-regulatory implementation for the
response of gene g1, as adapted from the E. coli lac operon. To achieve
the desired effects, the operator sites need to be strong (filled boxes)
and the promoter needs to be weak (open box). In this and subsequent
cis-regulatory constructs, we use the offset, overlapping boxes to indicate
mutual repression and the dashed lines to indicate cooperative interaction.
The logic function that this system implements is indicated above the con-
struct, with the overline denoting the ‘‘inverse’’ of A, or NOT A.

Fig. 2. Cis-regulatory constructs and response characteristics of the AND (a),
OR (b), and NAND (c) gates. Filled, hatched, and open boxes denote strong,
moderate, and weak binding sites, respectively. Dashed lines indicate coop-
erative interaction with !i,j " 20, and overlapping boxes indicate repulsive
interaction with !i,j " 0. Plotted to the right of each construct is the fold
change in RNAP-binding probability, &P ' P([A], [B])!Pmin for typical cellular
TF concentrations [A] and [B] (in nM). See Supporting Text for the actual forms
of P([A], [B]) and the strengths of the binding sites. Qualitative features of
these plots are insensitive to the precise values of the parameters used.
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cant in bacteria, where the time scale for gene expression is a
significant portion of the generation time. Indeed, the preference
for a broad but shallow network architecture has been observed
recently in a large-scale analysis of the E. coli gene-regulatory
circuits (4). Of course, a limited number of gene cascades can be
used if speed is not a limiting factor (e.g., in eukaryotes) and may
be especially useful in situations such as cell-cycle control (21) and
early development (22), where natural temporal orders exist.

Limitations. There are limitations to the control functions one can
implement by using only the two ingredients of regulated recruit-
ment formulated thus far. This is illustrated with gene g6, the
‘‘equivalence’’ or EQ gate. A strong promoter is required here to
turn the gene ON when neither of the TFs are activated, whereas
repression is needed under multiple conditions (i.e., when A is
activated and B is not, and vice versa). It is difficult to implement
both repressive conditions by the direct physical exclusion of RNAP
given the small size of the promoter region (see Fig. 4a). The
situation is improved somewhat in an alternative approach involv-
ing two promoters, although multiple repressions are still needed
(see Fig. 4b). This turns out to be a general problem for the
implementation of more complex regulatory functions, which will
generically require multiple repression conditions. An effective
strategy to overcome promoter overcrowding is repression from a
distance. One way to accomplish distal repression is through DNA
looping mediated by protein dimerization; see, e.g., the ho-
modimerization of AraC in E. coli (23).

A simple strategy to implement repression under multiple con-
ditions is to use heterodimers, with two subunits each recognizing
a distinct DNA site while associating strongly to each other (quan-
tified by a cooperativity factor !i,j ! 100) as shown in Fig. 5a. In
recent experiments, long-range regulation through heterodimers
has been demonstrated in vivo by using either two regulatory

proteins, each fused with a recognition domain according to the
‘‘two-hybrid’’ approach (24), or a single regulatory protein with two
distinct binding domains (25). For our purposes, distal repression
can be implemented by overlapping one of the binding sites, say the
target of the S subunit, with the promoter. To control the repressive
effect solely by the proteins A and B, one can set up a steady
background concentration of the heterodimers and make the
binding strength of the distal site weak such that the heterodimers
only bind to their respective DNA targets when recruited by the
appropriate TFs placed adjacent to the distal site. Binding sites for
A and B can also be placed overlapping with the distal site to turn
off distal repression under desired conditions. A cis-regulatory
construct and the corresponding response characteristics of the EQ
gate, using the distal repression scheme, is shown in Fig. 5b with
multiple binding sites for the R subunit used to enforce multiple
repression conditions (see Supporting Text for details). Alterna-
tively, the EQ gate could be implemented by using a distal activation
scheme as shown in Fig. 5c, with the target of the S subunit located
in close vicinity of the promoter so as to recruit the RNAP.

Complex Transcription Logics
The schemes discussed above with distal activation and repression
can be readily extended to describe combinatorial control by
multiple TF species. As long as the glue-like contact interaction
exists between the TFs and RNAP, one species of TF can be
substituted for another by changing the TF-specific DNA-binding
sequences in Figs. 1–5. (See below for a discussion on possible
adverse effects of promiscuous glue-like interactions.) More com-
plex regulatory functions involving three or more inputs can be
implemented by generalizing the constructs of Fig. 5 b and c. Fig.
6a illustrates the general architecture of the regulatory region
obtained by using the distal activation scheme. Note that the
emerging structure is naturally modular, in the sense that the
sequence segment coding for a given logical expression (indicated
by brackets) can be moved to different positions in the regulatory
region without affecting the regulatory function (6, 22). Because
each module recruits RNAP on its own, the regulatory logic
function implemented is of the form

L " C1 OR C2 OR . . . OR CM, [1]

where L indicates the occupation state of the promoter, and Cm is
the occupation state of the binding site Rm in the mth module.

Within each module, the recruitment of the R subunit to its
target must be accomplished molecularly through contact with TFs

Fig. 3. Various strategies of implementing the XOR function. (a) A gene
cascade, where the intermediate gene products G3 and G4 themselves are TFs
that can interact cooperatively. Alternative cis-regulatory constructs using a
single promoter (b) or two promoters (c) are shown. Notations are the same
as those used for Fig. 2, whereas the squiggles in c indicate that the two
promoters can be at variable distances from one another.

Fig. 4. Cis-regulatory constructs for possible implementations of the EQ gate
using a single promoter (a) or two promoters (b). Notations are the same as
those used for Figs. 2 and 3. Both constructs illustrate the problem of promoter
overcrowding, a situation that occurs when multiple repressive conditions are
needed.

5138 ! www.pnas.org"cgi"doi"10.1073"pnas.0930314100 Buchler et al.
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7 - Gates of the E. Coli sugar genes -

low fucose levels and the other at intermediate cAMP levels
(Figure 2R). It displays reduced expression levels when both sig-
nals are low and when both are high. This function resembles
a graded version of an ‘‘exclusive-OR’’ (XOR) function (Buchler
et al., 2003; Hermsen et al., 2006).

We find that promoters in the same system can show different
input functions, despite the fact that they are controlled by the
same signals and regulators. This is seen by comparing input
functions along columns in Figure 2. These differences can, in
certain cases, be related to the biological function of the gene
products. One case in which different biological roles corre-
sponded to different input functions can be seen when compar-

ing transcription factors to enzymes and transporters (comparing
rows in Figure 2). Transcription factor promoters tend to be less
sensitive to the levels of the sugar inducer than other genes in
the same system. In one case,malT, the input function is almost
totally independent of the sugar (Figure 2K). Other transcription
factors are activated at lower levels of the sugar than the other
genes in the system (araC, galS, and fucR; Figures 2B, 2G, and
2R). Thismay reflect the constitutive need for somebasal expres-
sion level of these transcription factors, which is required in order
to sense the sugar and regulate the other genes in the system.
An additional case where different biological roles corre-

sponded to different input functions can be seen when

Figure 2. Input Functions of E. coli Sugar Genes
(A–E) Arabinose system. (F–I) Galactose system. (J–M) Maltose system. (N–P) Rhamnose system. (Q–S) Fucose system. Input functions are defined as the

promoter activity at each of the 96 combinations of the two input signals, cAMP and the sugar. The x- and y-axes correspond respectively to external sugar

and cAMP concentrations in mM. The same cAMP levels are used in all input functions, and the same sugar levels are used in each column. Promoter activity

is the rate of GFP fluorescence accumulation per OD unit in exponential phase. The figure shows promoter activity normalized to its maximal value for each

promoter. Rows are arranged by biological role.
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 - How are regulatory signals 
intertwined? -

phenotype

signaling

G1 G2 G3 G4 G5 G6 G7 G8 G9

input

TF1 TF2 TF3

TF4 TF5 TF6 TF7 TF8

TF TF TF TF TFTF

E. Coli H. Sapiens

Cl concentrations in the Sajama ice core, and to
a number of other pedological and geomorpho-
logical features indicative of long-term dry cli-
mates (8, 11–14, 18). This decline in human
activity around the Altiplano paleolakes is seen
in most caves, with early and late occupations
separated by largely sterile mid-Holocene sed-
iments. However, a few sites, including the
caves of Tulan-67 and Tulan-68, show that
people did not completely disappear from the
area. All of the sites of sporadic occupation
are located near wetlands in valleys, near
large springs, or where lakes turned into wet-
lands and subsistence resources were locally
still available despite a generally arid climate
(7, 8, 19, 20).

Archaeological data from surrounding ar-
eas suggest that the Silencio Arqueológico
applies best to the most arid areas of the
central Andes, where aridity thresholds for
early societies were critical. In contrast, a
weaker expression is to be expected in the
more humid highlands of northern Chile
(north of 20°S, such as Salar Huasco) and
Peru (21). In northwest Argentina, the Silen-
cio Arqueológico is found in four of the six
known caves (22) [see review in (23)]. It is
also found on the coast of Peru in sites that
are associated with ephemeral streams (24).
The southern limit in Chile and northwest
Argentina has yet to be explored.
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Network Motifs: Simple Building
Blocks of Complex Networks

R. Milo,1 S. Shen-Orr,1 S. Itzkovitz,1 N. Kashtan,1 D. Chklovskii,2

U. Alon1*

Complex networks are studied across many fields of science. To uncover their
structural design principles, we defined “network motifs,” patterns of inter-
connections occurring in complex networks at numbers that are significantly
higher than those in randomized networks. We found such motifs in networks
from biochemistry, neurobiology, ecology, and engineering. The motifs shared
by ecological food webs were distinct from the motifs shared by the genetic
networks of Escherichia coli and Saccharomyces cerevisiae or from those found
in the World Wide Web. Similar motifs were found in networks that perform
information processing, even though they describe elements as different as
biomolecules within a cell and synaptic connections between neurons in Cae-
norhabditis elegans. Motifs may thus define universal classes of networks. This
approach may uncover the basic building blocks of most networks.

Many of the complex networks that occur in
nature have been shown to share global statis-
tical features (1–10). These include the “small
world” property (1–9) of short paths between
any two nodes and highly clustered connec-
tions. In addition, in many natural networks,
there are a few nodes with many more connec-
tions than the average node has. In these types

of networks, termed “scale-free networks” (4,
6), the fraction of nodes having k edges, p(k),
decays as a power law p(k) ! k–" (where " is
often between 2 and 3). To go beyond these
global features would require an understanding
of the basic structural elements particular to
each class of networks (9). To do this, we
developed an algorithm for detecting network
motifs: recurring, significant patterns of inter-
connections. A detailed application to a gene
regulation network has been presented (11).
Related methods were used to test hypotheses
on social networks (12, 13). Here we generalize
this approach to virtually any type of connec-
tivity graph and find the striking appearance of

1Departments of Physics of Complex Systems and
Molecular Cell Biology, Weizmann Institute of Sci-
ence, Rehovot, Israel 76100. 2Cold Spring Harbor Lab-
oratory, Cold Spring Harbor, NY 11724, USA.

*To whom correspondence should be addressed. E-
mail: urialon@weizmann.ac.il

Fig. 1. (A) Examples
of interactions repre-
sented by directed
edges between nodes
in some of the net-
works used for the
present study. These
networks go from the
scale of biomolecules
(transcription factor
protein X binds regu-
latory DNA regions
of a gene to regulate
the production rate
of protein Y),
through cells (neuron
X is synaptically con-
nected to neuron Y),
to organisms (X
feeds on Y). (B) All 13 types of three-node connected subgraphs.
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classes), and edges represent synaptic connec-
tions between the neurons. We found the feed-
forward loop motif in agreement with anatomi-
cal observations of triangular connectivity struc-
tures (24). The four-node motifs include the
bi-fan and the bi-parallel (Table 1). Two of
these motifs (feedforward loop and bi-fan) were

also found in the transcriptional gene regulation
networks. This similarity in motifs may point to
a fundamental similarity in the design con-
straints of the two types of networks. Both net-
works function to carry information from sen-
sory components (sensory neurons/transcription
factors regulated by biochemical signals) to ef-

fectors (motor neurons/structural genes). The
feedforward loop motif common to both types
of networks may play a functional role in infor-
mation processing. One possible function of this
circuit is to activate output only if the input
signal is persistent and to allow a rapid deacti-
vation when the input goes off (11). Indeed,
many of the input nodes in the neural feedfor-
ward loops are sensory neurons, which may
require this type of information processing
to reject transient input fluctuations that are
inherent in a variable or noisy environment.

We also studied several technological net-
works. We analyzed the ISCAS89 benchmark
set of sequential logic electronic circuits (7, 25).
The nodes in these circuits represent logic gates
and flip-flops. These nodes are linked by direct-
ed edges. We found that the motifs separate the
circuits into classes that correspond to the cir-
cuit’s functional description. In Table 1, we
present two classes, consisting of five forward-
logic chips and three digital fractional multipli-
ers. The digital fractional multipliers share three
motifs, including three- and four-node feedback
loops. The forward logic chips share the feed-
forward loop, bi-fan, and bi-parallel motifs,
which are similar to the motifs found in the
genetic and neuronal information-processing
networks. We found a different set of motifs in
a network of directed hyperlinks between
World Wide Web pages within a single domain
(4). The World Wide Web motifs may reflect a
design aimed at short paths between related
pages. Application of our approach to nondi-
rected networks shows distinct sets of motifs in
networks of protein interactions and Internet
router connections (18).

None of the network motifs shared by the
food webs matched the motifs found in the gene
regulation networks or the World Wide Web.
Only one of the food web consensus motifs also
appeared in the neuronal network. Different
motif sets were found in electronic circuits with
different functions. This suggests that motifs
can define broad classes of networks, each with
specific types of elementary structures. The
motifs reflect the underlying processes that gen-
erated each type of network; for example, food
webs evolve to allow a flow of energy from the
bottom to the top of food chains, whereas gene
regulation and neuron networks evolve to pro-
cess information. Information processing seems
to give rise to significantly different structures
than does energy flow.

We further characterized the statistical sig-
nificance of the motifs as a function of network
size, by considering pieces of various sizes
(subnetworks) of the full network. The concen-
tration of motifs in the subnetworks is about the
same as that in the full network (Fig. 3). In
contrast, the concentration of the corresponding
subgraphs in the randomized versions of the
subnetworks decreases sharply with size. In
analogy with statistical physics, the number of
appearances of each motif in the real networks

Table 1. Network motifs found in biological and technological networks. The numbers of nodes and edges
for each network are shown. For each motif, the numbers of appearances in the real network (Nreal) and
in the randomized networks (Nrand! SD, all values rounded) (17, 18) are shown. The P value of all motifs
is P " 0.01, as determined by comparison to 1000 randomized networks (100 in the case of the World
Wide Web). As a qualitative measure of statistical significance, the Z score # (Nreal – Nrand)/SD is shown.
NS, not significant. Shown are motifs that occur at least U # 4 times with completely different sets of
nodes. The networks are as follows (18): transcription interactions between regulatory proteins and genes
in the bacterium E. coli (11) and the yeast S. cerevisiae (20); synaptic connections between neurons in
C. elegans, including neurons connected by at least five synapses (24); trophic interactions in ecological
food webs (22), representing pelagic and benthic species (Little Rock Lake), birds, fishes, invertebrates
(Ythan Estuary), primarily larger fishes (Chesapeake Bay), lizards (St. Martin Island), primarily inverte-
brates (Skipwith Pond), pelagic lake species (Bridge Brook Lake), and diverse desert taxa (Coachella
Valley); electronic sequential logic circuits parsed from the ISCAS89 benchmark set (7, 25), where nodes
represent logic gates and flip-flops (presented are all five partial scans of forward-logic chips and three
digital fractional multipliers in the benchmark set); and World Wide Web hyperlinks between Web pages
in a single domain (4) (only three-node motifs are shown). e, multiplied by the power of 10 (e.g., 1.46e6
# 1.46$ 106).

*Has additional four-node motif: (X3Z, W; Y3Z, W; Z3W), Nreal# 150, Nrand# 85! 15, Z# 4. †Has additional
four-node motif: (X3Y, Z; Y3Z; Z3W), Nreal# 204, Nrand# 80! 20, Z# 6. The three-node pattern (X3Y, Z; Y3Z;
Z3Y) also occurs significantly more than at random. It is not a motif by the present definition because it does not
appear with completely distinct sets of nodes more than U # 4 times. ‡Has additional four-node motif: (X3Y;
Y3Z, W; Z3X; W3X), Nreal # 914, Nrand # 500 ! 70, Z # 6. §Has two additional three-node motifs: (X3Y, Z;
Y3Z; Z3Y), Nreal # 3e5, Nrand # 1.4e3 ! 6e1, Z # 6000, and (X3Y, Z; Y3Z), Nreal # 5e5, Nrand # 9e4 ! 1.5e3,
Z # 250.

Network Nodes Edges Nreal Nrand ± SD Z score Nreal Nrand ± SD Z score Nreal Nrand ± SD Z score

Gene regulation

(transcription)

            X

            Y

            Z

Feed-

forward

loop

    X           Y

     Z         W

Bi-fan

E. coli   424    519 40   7 ± 3 10   203   47 ± 12 13

S. cerevisiae* 685 1,052 70 11 ± 4 14 1812 300 ± 40 41

Neurons              X

             Y

             Z

Feed-

forward

loop

    X           Y

     Z          W

Bi-fan           X

  Y              Z

          W

Bi-

parallel

 C. elegans† 252 509 125 90 ± 10 3.7 127 55 ± 13 5.3 227 35 ± 10 20

Food webs             X

            Y

             Z

Three

chain

          X

  Y              Z

         W

Bi-

parallel

Little Rock 92 984 3219 3120 ± 50 2.1 7295 2220 ± 210 25

Ythan 83 391 1182 1020 ± 20 7.2 1357 230 ± 50 23

St. Martin 42 205   469   450 ± 10 NS   382 130 ± 20 12

Chesapeake 31   67     80     82 ± 4       NS     26     5 ± 2      8

Coachella 29 243   279   235 ± 12 3.6   181   80 ± 20   5

Skipwith 25 189   184   150 ± 7 5.5   397   80 ± 25 13

 B. Brook 25 104   181   130 ± 7 7.4   267   30 ± 7    32

Electronic circuits

(forward logic chips)

             X

             Y

             Z

Feed-

forward

loop

Bi-fan           X

  Y              Z

          W

Bi-

parallel

s15850 10,383 14,240 424   2 ± 2 285 1040 1 ± 1 1200 480 2 ± 1 335

s38584 20,717 34,204 413 10 ± 3 120 1739 6 ± 2   800 711 9 ± 2 320

s38417 23,843 33,661 612   3 ± 2 400 2404 1 ± 1 2550 531 2 ± 2 340

s9234   5,844   8,197 211   2 ± 1 140   754 1 ± 1 1050 209 1 ± 1 200

s13207   8,651 11,831 403   2 ± 1 225 4445 1 ± 1 4950 264 2 ± 1 200

Electronic circuits

(digital fractional multipliers)

         X

Y                Z

Three-

node

feedback

loop

Bi-fan      X            Y

     Z             W

Four-

node

feedback

loop

s208 122 189 10 1 ± 1   9   4 1 ± 1   3.8   5 1 ± 1   5

s420 252 399 20 1 ± 1 18 10 1 ± 1 10 11 1 ± 1 11

s838‡ 512 819 40 1 ± 1 38 22 1 ± 1 20 23 1 ± 1 25

World Wide Web              X

             Y

             Z

Feedback

with two

mutual

dyads

         X

Y                Z

Fully

connected

triad

        X

Y                Z

Uplinked

mutual

dyad

nd.edu§ 325,729 1.46e6 1.1e5 2e3 ± 1e2 800 6.8e6 5e4±4e2 15,000 1.2e6 1e4 ± 2e2 5000

    X           Y

     Z         W

    X           Y

     Z         W

R E P O R T S

25 OCTOBER 2002 VOL 298 SCIENCE www.sciencemag.org826

Transctiptional regulation:
 Network Motifs:
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PAR slows the response time because at early stages, 
when levels of X are low, production is slow. Production 
picks up only when X concentration approaches the acti-
vation threshold for its own promoter. Thus, the desired 
steady state is reached in an S-shaped curve (FIG. 1d). 
The response time is longer than in a corresponding 
simple-regulation system, as shown theoretically24 and 
experimentally by Maeda and Sano25.

PAR tends to increase cell–cell variability. If PAR is 
weak (that is, X moderately enhances its own produc-
tion rate), the cell–cell distribution of X concentration 
is expected to be broader than in the case of a simply 
regulated gene (FIG. 1f). Strong PAR can lead to bimodal 
distributions, whereby the concentration of X is low 
in some cells but high in others. In cells in which the 
concentration is high, X activates its own production 
and keeps it high indefinitely. Strong PAR can therefore 
lead to a differentiation-like partitioning of cells into 
two populations25–27 (FIG. 1f). In some cases, PAR can 
be useful as a memory to maintain gene expression, as 
mentioned below (see the section on developmental 

networks). In other cases, a bimodal distribution is 
thought to help cell populations to maintain a mixed 
phenotype so that they can better respond to a stochastic 
environment (reviewed in REF. 28).

Feedforward loops
The second family of network motifs is the feedforward 
loop (FFL). It appears in hundreds of gene systems in 
E. coli6,9 and yeast7,10, as well as in other organisms11–16. 
This motif consists of three genes: a regulator, X, which 
regulates Y, and gene Z, which is regulated by both X 
and Y. Because each of the three regulatory interactions 
in the FFL can be either activation or repression, there 
are eight possible structural types of FFL (FIG. 2a).

To understand the function of the FFLs, we need to 
understand how X and Y are integrated to regulate the 
Z promoter29,30. Two common ‘input functions’ are an 
‘AND gate’, in which both X and Y are needed to activate 
Z, and an ‘OR gate’, in which binding of either regulator 
is sufficient. Other input functions are possible, such 
as the additive input function in the flagella system24,31 
and the hybrid of AND and OR logic in the lac pro-
moter32. However, much of the essential behaviour of 
FFLs can be understood by focusing on the stereotypical 
AND and OR gates. Each of the eight FFL types can thus 
appear with at least two input functions.

In the best studied transcriptional networks (E. coli 
and yeast), two of the eight FFL types occur much more 
frequently than the other six types. These common types 
are the coherent type-1 FFL (C1-FFL) and the incoherent 
type-1 FFL (I1-FFL)33,34,36. Here I discuss their dynamical 
functions in detail; the functions of all eight FFL types 
are described in REF. 34.

The C1-FFL is a ‘sign-sensitive delay’ element and a 
persistence detector. In the C1-FFL, both X and Y are 
transcriptional activators (FIG. 2b). I will first consider 
the behaviour of the FFL when the Z promoter has an 
AND input function, and then turn to the case of the 
OR input function.

With an AND input function, the C1-FFL shows 
a delay after stimulation, but no delay when stimula-
tion stops. To see this, let’s follow the behaviour of the 
FFL. When the signal Sx appears, X becomes active 
and rapidly binds its downstream promoters. As a 
result, Y begins to accumulate. However, owing to the 
AND input function, Z production starts only when Y 
concentration crosses the activation threshold for the 
Z promoter. This results in a delay of Z expression fol-
lowing the appearance of Sx (FIG. 3a). In contrast, when 
the signal Sx is removed, X rapidly becomes inactive. As 
a result, Z production stops because deactivation of its 
promoter requires only one arm of the AND gate to be 
‘shut off ’. Hence, there is no delay in deactivation of Z 
after the signal Sx is removed (FIG. 3a).

This dynamic behaviour is called sign-sensitive delay; 
that is, delay depends on the sign of the Sx step. An ON 
step (addition of Sx) causes a delay in Z expression, but 
an OFF step (removal of Sx) causes no delay.

The duration of the delay is determined by the bio-
chemical parameters of the regulator Y; for example, the 

Figure 2 | Feedforward loops (FFLs). a | The eight types 
of feedforward loops (FFLs) are shown. In coherent FFLs, 
the sign of the direct path from transcription factor X to 
output Z is the same as the overall sign of the indirect 
path through transcription factor Y. Incoherent FFLs have 
opposite signs for the two paths. b | The coherent type-1 
FFL with an AND input function at the Z promoter. 
c | The incoherent type-1 FFL with an AND input function 
at the Z promoter. SX and SY are input signals for X and Y.
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• filters transient signals
• delayed turn-on
• immediate shutdown

 - The feed forward loop -

from X and a delayed one through Y. If the activation of X is tran-
sient, Y cannot reach the level needed to significantly activate Z,
and the input signal is not transduced through the circuit. Only
when X signals for a long enough time so that Y levels can build
up will Z be activated (Fig. 2a). Once X is deactivated, Z shuts
down rapidly. This kind of behavior can be useful for making
decisions based on fluctuating external signals.

The SIM motif is found in systems of genes that function sto-
chiometrically to form a protein assembly (such as flagella) or a
metabolic pathway (such as amino-acid biosynthesis). In these
cases, it is useful that the activities of the operons are determined
by a single transcription factor, so that their proportions at
steady state can be fixed. In addition, mathematical analysis sug-
gests that SIMs can show a detailed temporal program of expres-
sion resulting from differences in the activation thresholds of the
different genes (Fig. 2b). Built into this design is a pattern in
which the first gene activated is the last one to be deactivated.
Such temporal ordering can be useful in processes that require
several stages to complete. This type of mechanism may explain
the experimentally observed temporal program in the expression
of flagella biosynthesis genes18.

The motifs allow a representation of the E. coli transcriptional
network (Fig. 3) in a compact, modular form (for an image of the
full network, see Web Fig. A online). By using symbols to represent
the different motifs (Fig. 1), the network is broken down to its
basic building blocks. A single layer of DORs connects most of the
transcription factors to their effector operons. Feedforward loops
and SIMs often occur at the outputs of these DORs. The DORs are
interconnected by the global transcription factors, which typically
control many genes in one DOR and few genes in several DORs.
An important step in visualizing the network was to allow each
global transcription factor to appear multiple times, whenever it is
an input to a structure. This reduces the complexity of the inter-
connections while preserving all the information. There are few

long cascades3, usually involving !-factors, such as cas-
cades of depth 5 in the flagella and nitrogen systems. Over
70% of the operons are connected to the DORs; the rest of
the operons are in small disjoint systems. Most disjoint
systems have only 1 to 3 operons. The remaining disjoint
systems have up to 25 operons and show many SIMs and
feedforward loops. A notable feature of the overall organi-
zation is the large degree of overlap within DORs between
the short cascades that control most operons. The layer of
DORs may therefore represent the core of the computa-
tion carried out by the transcriptional network.

Cycles such as feedback loops are an important feature
of regulatory networks. Transcriptional feedback loops
occur in various organisms, such as the genetic switch in
"-phage5. In the E. coli data set, there are no examples of
feedback loops of direct transcriptional interactions,
except for auto-regulatory loops3. However, the absence

of feedback loops is not statistically significant, as over 80% of
the randomized networks also have no feedback loops (Table 1).
The many regulatory feedbacks loops in the organism are carried
out at the post-transcriptional level.

We considered only transcription interactions specifically
manifested by transcription factors that bind regulatory sites3,14.
This transcriptional network can be thought of as the ‘slow’ part
of the cellular regulation network (time scale of minutes). An
additional layer of faster interactions, which include interactions
between proteins (often subsecond timescale), contributes to the
full regulatory behavior and will probably introduce additional
network motifs. Characterization of additional transcriptional
interactions may change the present motif assignment for spe-
cific systems. However, our conclusions regarding the high fre-
quencies of feedforward loops, SIMs and overlapping regulation
compared with randomized networks are insensitive to the addi-
tion or removal of interactions from the data set. These features
are still highly significant, even when 25% of the connections in
the E. coli network are removed or rearranged at random.

The concept of homology between genes based on sequence
motifs has been crucial for understanding the function of
uncharacterized genes. Likewise, the notion of similarity
between connectivity patterns in networks, based on network
motifs, may be helpful in gaining insight into the dynamic
behavior of newly identified gene circuits. The present analysis
may serve as a guideline for experimental study of the functions
of the motifs. It would be useful to determine whether the net-
work motifs found in E. coli can characterize the transcriptional
networks of other cell types. In higher eukaryotes, for example,
there will be many more regulators affecting each gene, and addi-
tional types of circuits may be found. The findings presented
here also raise the possibility that motifs can be defined in other
biological networks7, such as signal transduction, metabolic19

and neuron connectivity networks.
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Fig. 2 Dynamic features of the coherent feedforward loop and SIM
motifs. a, Consider a coherent feedforward loop circuit with an ‘AND-
gate’–like control of the output operon Z. This circuit can reject rapid
variations in the activity of the input X, and respond only to persistent
activation profiles. This is because Y needs to integrate the input X
over time to pass the activation threshold for Z (thin line). A similar
rejection of rapid fluctuations can be achieved by a cascade, X#Y#Z;
however, the cascade has a slower shut-down than the feedforward
loop (thin red line in the Z dynamics panel). b, Dynamics of the SIM
motif. This motif can show a temporal program of expression accord-
ing to a hierarchy of activation thresholds of the genes. When the
activity of X, the master activator, rises and falls with time, the genes
with the lowest threshold are activated earliest and deactivated lat-
est. Time is in units of protein lifetimes, or of cell cycles in the case of
long-lived proteins.
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Figure 3 | The coherent type-1 feedforward loop (C1-FFL) and its dynamics. a | The C1-FFL with an AND input 
function shows delay after stimulus (SX) addition, and no delay after stimulus removal. It thus acts as a sign-sensitive 
filter, which responds only to persistent stimuli. b | An experimental study of the C1-FFL in the arabinose system of 
Escherichia coli, using fluorescent-reporter strains and high-resolution measurements in living cells. This system 
(represented by red circles) shows a delay after addition of the input signal (cAMP), and no delay after its removal, 
relative to a simple-regulation system that responds to the same input signal (the lac system, represented by blue 
squares). c | The C1-FFL with an OR-like input function in the flagella system of E. coli shows a delay after signal 
removal but not after the onset of signal (represented by orange circles). Deletion of the ‘Y’ gene (FliA) abolishes this 
delay (represented by purple squares). Z/Zst, Z concentration relative to the steady state Zst.
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opposite effect to the AND case we have just discussed: 
with an OR input function, the C1-FFL shows no delay 
after stimulation, but does show a delay when stimu-
lation stops. To see this, note that when the signal Sx 
appears, X alone is sufficient to activate Z because of the 
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period of stimulation, X is no longer active, but the pres-
ence of Y is still enough to allow production of Z. Thus, 
the C1-FFL with OR logic allows continued production 
in the face of a transient loss of the input signal.

This behaviour was experimentally demonstrated in 
the flagella system of E. coli24 (FIG. 3c). The flagella motor 
genes are regulated in an FFL that has input functions 
that resemble OR gates (additive functions of the two 
activators FlhDC and FliA). The flagella FFL was found 
to prolong flagella gene expression after the input signal 
(active FlhDC) stopped, but no delay occurred when 
the input signal appeared. Mutations and conditions 
that inactivate the FliA gene in this FFL lead to a loss of 
this delay, resulting in immediate shut-off of the flagella 
genes once the input signal stops. The delay in the flag-
ella system, of about 1 hour, is comparable to the time 
that is needed for the biogenesis of a complete flagella 
motor.

The I1-FFL is a pulse generator and response accelerator. 
In the I1-FFL, the two arms of the FFL act in opposi-
tion: X activates Z, but also represses Z by activating the 
repressor Y (FIG. 2c). As a result, when a signal causes X 
to assume its active conformation, Z is rapidly produced 
(FIG. 4a). However, after some time, Y levels accumulate 
to reach the repression threshold for the Z promoter. As 
a result, Z production decreases and its concentration 
drops, resulting in pulse-like dynamics (FIG. 4b). In the 
extreme case that Y completely represses Z, the pulse 
drops to zero.

Pulse-like dynamics were experimentally demonstrated 
in a synthetic I1-FFL that was built of well-characterized 
bacterial regulators in E. coli35. In this FFL, the activa-
tor LuxR (X) was made to activate both a GFP reporter 
(Z) and the λ-repressor C1 (Y), which repressed the Z 
promoter.

In addition to pulse-like dynamics, the I1-FFL can 
carry out another dynamical function: response accel-
eration. In cases in which Y does not completely repress 

Figure 4 | The incoherent type-1 feeforward loop (I1-FFL) and its dynamics. 
a | The I1-FFL can generate a pulse of Z expression in response to a step stimulus of 
Sx. This occurs because once Y has passed its threshold (indicated by an orange 
circle) it starts to repress Z. b | The I1-FFL shows faster response time for the 
concentration of protein Z than a simple-regulation circuit with the same steady-
state expression level. c | An experimental study of the dynamics of the I1-FFL in the 
galactose system of E. coli. Response acceleration in the wild-type system (marked 
‘galE-WT’) is found following steps of the input signal (glucose starvation). The 
acceleration is disrupted when the effect of the repressor GalS is abolished by 
mutating its binding site in the promoter of the output gene operon galETK 
(marked ‘galE-mut’). T1/2, response time; Z/Zst, Z concentration relative to 
the steady state.
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Figure 4 | The incoherent type-1 feeforward loop (I1-FFL) and its dynamics. 
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the production of Z, Z concentration reaches a certain 
non-zero steady-state level. Because of the strong initial 
production of Z in the time period before Y represses 
the Z promoter, Z reaches its steady-state rapidly. The 
response time is shorter than that of a corresponding 
simple-regulation system (FIG. 4c). Note that, although both 
NAR and I1-FFLs can speed up responses, NAR works 
only on transcription factors (or genes that lie on the 
same operon with transcription factors), whereas 
the I1-FFL can accelerate any target gene Z.

Such response acceleration was observed experimen-
tally in the galactose utilization system of E. coli36 (FIG. 4c). 
Here onset of glucose starvation in the absence of galac-
tose leads to a rapid induction of the galactose-utilization 
genes to a moderate level of expression. The response 
time of this system is about threefold faster than that of 
a simple-regulation system that responds to the same 
signal (the lac system). This speed-up was dependent 
on the I1-FFL: in mutants and conditions in which the 
motif was disrupted, speed-up was abolished and 
the dynamics resembled simple regulation (FIG. 4c).

Note that network motifs can utilize not only 
transcription factor proteins but also microRNAs 
(miRNAs)37. For example, an I1-FFL in mammalian 
cells involves MYC as activator X, E2F1 as the target 
gene Z, and a miRNA in the role of the repressor Y38. 
Diverse FFL motifs with miRNAs have been found in 
Caenorhabditis elegans39.

The NAR and PAR network motifs are sometimes 
integrated into FFLs, usually on the regulator Y. These 
regulatory loops can help to speed up or slow down the 
response time of Y, enhancing the behaviour of the FFLs.

The dynamical functions of FFLs can be tuned by 
varying the molecular parameters of the circuit. Changes 
in parameters such as the production rates or the activa-
tion thresholds of the regulators can, as mentioned above, 
determine the delay in the C1-FFL, or the acceleration 
factor of the I1-FFL. This tuning can be captured by 
simple models1,9,34,36. Similar functions can, in principle, 
be accomplished by other circuits that resemble FFLs, 
but with longer branches that diverge and then merge 

back. However, such larger circuits are rarely found in 
known transcription networks. The FFL can poten-
tially perform additional computational functions, as 
suggested by theoretical analyses40–43.

Multi-output FFLs. The FFLs in transcription networks 
tend to combine to form multi-output FFLs6,44,45, in 
which X and Y regulate multiple output genes Z1,Z2,…Zn. 
In these configurations, each of the output genes benefits 
from the dynamical functions that are described above. 
In addition, the multi-output FFL can generate temporal 
orders of gene activation and inactivation by means of 
a hierarchy of regulation thresholds for the different 
promoters. This was experimentally demonstrated using 
the flagella genes31: mutations in the promoter regions 
that changed the activation thresholds were able to 
reprogramme the temporal order of the genes31. Further 
experimental tests of the dynamical behaviour of FFLs 
in living cells would be of great interest, especially in 
organisms other than E. coli.

Single-input modules (SIM)
Our third family of network motifs have a simple pattern 
in which a regulator X regulates a group of target genes 
(FIG. 5a). In the purest form, no other regulator regulates 
any of these genes, hence the name single-input module. 
X also typically regulates itself.

The main function of this motif is to allow coordinated 
expression of a group of genes with shared function. 
In addition, this motif has a more subtle dynamical 
property that is similar to that of the multi-output FFLs 
that are discussed above: it can generate a temporal 
expression programme, with a defined order of activa-
tion of each of the target promoters. X often has different 
activation thresholds for each gene, owing to variations 
in the sequence and context of its binding site in each 
promoter. So, when X activity rises gradually with time, 
it crosses these thresholds in a defined order, first the 
lowest threshold, then the next lowest threshold, an so 
on, resulting in a temporal order of expression (FIG. 5b). 
Similar reasoning applies when X acts as a repressor.

Figure 5 | The single-input module (SIM) network motif and its dynamics. a | The single-input module (SIM) 
network motif, and an example from the arginine-biosynthesis system. b | Temporal order of expression in a SIM. As 
the activity of the master regulator X changes in time, it crosses the different activation threshold of the genes in the 
SIM at different times, generating a temporal order of expression. 
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genes, fliA, is the last class 2 gene to turn on.
A separation of class 3 genes into two

kinetic groups was seen, with the filament
structural operons flgK, fliD, and fliC activat-
ed first, and flgM and the chemotaxis operons
meche and mocha going on only after a sub-
stantial delay (Fig. 2). Thus, the hardware for
the flagellar propeller is expressed before the
chemotaxis navigation system (Fig. 3). The
genes for motor torque generation, motAB in
the mocha operon, are in the late class 3
group, and indeed, it has been shown that
they can be functionally incorporated long
after motors are assembled (16, 17).

When flagella were induced in cells
with no preexisting flagella, a temporal
separation between most class 2 genes and
class 3 genes was observed (Fig. 2B, con-
dition A); whereas in cells with preexisting
flagella, the delay between class 2 and the
early class 3 genes decreased drastically
(Fig. 2B, condition B). This probably re-
flects the checkpoint in flagella biosynthe-
sis (Fig. 1). When preexisting flagella are
present, newly synthesized FlgM is export-
ed from the cells even before new basal
bodies are completed. This frees FliA to
turn on class 3 genes at an earlier time.
Such memory effects may be a general
kinetic signature of regulatory checkpoints.

A simple hypothesis for the mechanism
underlying the temporal order of promoter
activation within classes 2 and 3 is that the
DNA regulatory sites in the promoter regions
of the operons are ranked in affinity. As the
concentration of the relevant transcription
factor (FlhDC, FliA) gradually increases in
the cell, it first binds and activates the oper-
ons with the highest affinity sites, and only
later does it bind and activate operons with
lower affinity sites.

The standard genetic method of pathway
analysis suffers from the limitation that con-
clusions drawn from mutant cells sometimes

apply to a physiological state far from wild-
type. The present kinetic analysis can com-
plement genetics by probing cells with an
intact regulatory system, rather than mutant
cells. For example, class 3 operons were sub-
divided by mutant analysis into class “3a”
and class “3b” (Fig. 1), based on residual
expression in a fliA mutant of class 3a but not
3b operons (1). This mutant may exemplify a
situation never reached by wild-type cells
(high FlhDC but no FliA). The present kinet-
ic subdivision of class 3 operons into early
and late temporal groups hints at a function-
ally reasonable order.

The precise order of transcription of the
various operons is probably not essential for
assembling functional flagella. This is sug-
gested by complementation experiments in
which the motility of flagella mutants was
rescued by expression of the wild-type gene
from a foreign promoter (1). The detailed
transcription order could, however, function
to make flagella synthesis more efficient, be-
cause parts are not transcribed earlier than
needed. From the viewpoint of reverse engi-
neering, this may be exploited to decipher
detailed assembly steps from transcription
data.

The present experimental method can be
readily applied to gene systems in a broad
range of sequenced prokaryotes, as well as to
eukaryotic genes with well-defined regulato-
ry regions. For example, GFP was used to
monitor gene expression on a large scale in
yeast (18). Studies on various systems could
establish whether temporal clustering and
memory effects can be a general method in
mapping assembly cascades and detecting
regulatory checkpoints. It would be important
to discover whether, in analogy to the sys-
tems-identification principals of engineering,
there are ways of mapping additional system
motifs, such as feedback loops, by using de-
tailed expression measurements.
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rpm. The cultures were diluted 1:600 or 1:60 into
defined medium [M9 minimal salts (Bio 101, Inc.) "
0.1 mM CaCl2 " 2 mM MgSO4 " 0.4% glycerol "
0.1% casamino acids" kanamycin], at a final volume
of 150 !l per well in flat-bottomed 96-well plates
(Sarsteadt 82.1581.001). The cultures were covered
by a 100-!l layer of mineral oil (Sigma M-3516) to
prevent evaporation during measurement. Cultures
were grown in a Wallac Victor2 multiwell fluorimeter
set at 30°C and assayed with an automatically re-
peating protocol of shaking (1 mm orbital, normal
speed, 180 s), fluorescence readings (filters F485,
F535, 0.5 s, CW lamp energy 10,000), and absorbance
(OD) measurements (600 nm, P600 filter, 0.1 s). Time
between repeated measurements was 6 min. Back-
ground fluorescence of cells bearing a promotorless
GFP vector was subtracted. RP437 was the parental
strain of all reporter strains, except flhDC, for which
the signal was below background at early time points,
and thus YK410 was used. Similar timing and tem-
poral ordering of the flagellar operons was observed
in this strain. The high temporal resolution of the
present system benefits from the apparent rapid
activation of GFP in bacteria (24, 25) as compared
with reported times for folding and oxidation of the
chromophore in vitro, 10 min and 1 hour, respective-
ly (26). The detailed timing of expression observed in
the experiments described here implies that the
onset of flagella biosynthesis may be synchronized
within the population. This may involve metabolic

Fig. 3. Present kinetic classifi-
cation of the flagellar operons.
The three clusters and the
operons within each cluster are
arranged by their relative tim-
ing according to the temporal
clustering results. Positions of
the corresponding gene prod-
ucts in the flagellum (1) are
indicated in green.
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plate fluorimeter (14). Average errors between
repeat experiments were less than 10%, com-
pared with errors of at least twofold often as-
sociated with expression assays requiring cell
lysis and manipulation (10–12).

The flagella system is turned on during the
exponential phase of growth. Clustering the
fluorescence levels of the operons (Fig. 2A)
according to similarity in their expression pro-
files (10–13) showed that they fall into clusters
that correspond to the genetically defined class-
es 1 and 2 (Fig. 2B). Three of the six class 3
operons are close to the compact class 2 cluster,
and the other three are in a separate cluster. This
separation is based mainly on different coordi-
nated responses of the operon classes. To de-
termine the timing order, we extended the clus-
tering algorithm with a temporal labeling pro-
cedure that hierarchically orders the clusters
according to the relative timing of their average
expression profiles. Log fluorescence of each
reporter strain, normalized by its maximum for
each experiment, was set to zero mean and
variance one, and clustered by means of a stan-
dard single-linkage algorithm with a Euclidean
metric (Matlab 5.3, Mathworks) (15). In gener-
al, clustering algorithms do not specify an or-
dering of the clusters. In the resulting dendro-
grams, as the data are split hierarchically into a
tree, pairs of subtrees in each splitting are
placed in an arbitrary order. To define the tem-
poral order of expression, we first considered
each splitting from the top down and computed
the average log fluorescence (normalized by the
maximal fluorescence) for the two subtrees,
log( f1) and log( f2). Next, we computed ti ! –"
log[ fi(t)]dt (generally the earlier a sigmoidal
curve rises, the smaller its ti. Since log fluores-
cence is used, the initial rise timing is empha-
sized.) The subtree with the smaller ti was then
positioned to the left. The present algorithm
was able to correctly order simulated gene cas-
cades. The algorithm is available upon request
or at www.weizmann.ac.il/mcb/UriAlon.

The algorithm arranged the operons in the
order: class 1 followed by class 2 followed by
class 3 (8, 9) (Fig. 2B). Within the class 2
cluster, the promoters were turned on sequen-
tially, with significant delays, in the order
fliL, fliE, fliF, flgA, flgB, flhB, and fliA (Fig.
2). The observed order corresponds to the
spatial position of the gene products during
flagellar motor assembly, going from the cy-
toplasmic to the extracellular sides (1, 2)
(Fig. 3). The fliL operon genes form the

cytoplasmic C ring, and fliE and fliF genes
form the MS ring in the inner membrane,
thought to be the first assembled structure (1).
The flgA, flhB, and flgB genes participate in

the export and formation of the periplasmic
rod, the distal rings in the outer membrane,
and the extracellular hook. The transcription
factor responsible for turning on class 3
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Fig. 2. (A) Fluorescence
of flagella reporter
strains as a function of
time, normalized by
the maximal fluores-
cence of each strain.
Average of five experi-
ments in growth condi-
tion A (see below) are
shown (bars, SD). Class
1, 2, and 3 operons are
marked in blue, red,
and green, respectively.
(B) Fluorescence of fla-
gella reporter strains as
a function of time for
two experimental con-
ditions. Log intensity of
each promoter, nor-
malized by its maximal
value in each experi-
ment, scales from blue
(low) to red (high).
Operons are arranged according to the temporal clustering results. The first 630 minutes of each
experiment, for two growth conditions, with and without preexisting flagella, are shown. Condition A:
Stationary-phase cultures with two to five flagella per cell (29) are diluted 1:600 into fresh medium;
induction of new flagella begins after about three to four generations, and thus old flagella are diluted
out by cell division to a degree that most cells have no preexisting flagella. Condition B: Overnight
cultures are diluted 1:60. The flagellar operons are turned on within one cell generation so that old
flagella are present. The presence or absence of preexisting flagella was verified by microscopic
observation of cell motility as described (23). Dendrogram shows hierarchical gene clustering and
temporal order. The statistical significance (P value) for temporal ordering at each splitting was
determined by the fraction of times that a larger!t1# t2! value was found upon clustering and labeling
1000 randomized data sets generated by randomly permuting the gene coordinates at each time point.
Similarly, a P value for clusters was determined by the fraction of times that a larger splitting distance
occurred in the randomized data sets. Clusters with significance P $ 0.001 are marked with filled
triangles; P % 0.01 with an open triangle; and P & 0.01, no triangles. Temporal ordering of all tree
splittings is significant (P $ 0.01), except the splittings marked with a star.
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pressing the repressors TetR and LacIq (Lutz and Bu-
jard, 1997). We find no measurable fliL promoter activity
in the absence of the inducers IPTG and aTc. We mea-
sured promoter activity at 96 different combinations of
IPTG and aTc to find that the promoter activity was
activated in a graded manner by both IPTG and aTc
(Figure 2B). Figure 2B represents the cis-regulatory input
function of the fliL promoter (Setty et al., 2003). We find
that the effects of FliA and FlhDC are additive: denoting
the promoter activity at concentration x of IPTG and
concentration y of aTc by f(x,y), we find that

f(x,y) ! f(x,0) " f(0,y)

as shown in Figure 2C. This type of input function is
best described as a SUM gate, which may be considered
as a graded version of an OR gate.

These findings were used to construct a mathematical
model of the flagella class 2 gene network, represented
by a quantitative blueprint (Figure 3). The activity of each
promoter is

Pi(t) ! #i X(t) " #$i Y(t) (2)

where X(t) and Y(t) are the effective protein-level activity
profiles of FlhDC and FliA, respectively (in dimensionless
units). According to this model, the promoter activities
of the seven class 2 operons are explained by the two
“hidden functions,” X(t) and Y(t). The #i and #$i corre-
spond to the in vivo activation coefficients that result
from the action of each of the two input regulators (Fig-

Figure 1. Arrow Diagram and Dynamics of the Flagella Class 2 Tran-
ure 1). Since Equation 2 is bilinear, one can find thescription Network
best-fit values of the parameters #i, #$i, and the functions(A) Qualitative arrow diagram of the flagella class 2 gene network.
X(t) and Y(t), using an algebraic procedure termed singu-(B) Promoter activity (rate of GFP production per cell, dGFP/dOD)
lar value decomposition (Alter et al., 2000; Ronen et al.,of the seven class 2 promoters as a function of OD. Measurements

were performed during exponential growth after dilution from over- 2002) (see Experimental Procedures). We find that the
night cultures into defined medium in a multiwell fluorometer (Kalir dynamics of all of the class 2 promoters can be well
et al., 2001; Ronen et al., 2002). described using this model (compare full and dashed

lines in Figure 4B).
The fitting procedure produces predicted activity pro-ties, #$i ! 300 % 400 GFP/OD units for all promoters.

The second phase corresponds also to the onset of files X(t) and Y(t). Due to the linear form of the regulation,
any linear combination of X and Y can, in principle, fitexpression of the class 3 promoters and results from

activation of the FliA transcription factor. the data equally well. One can find specific predictions
for X and Y by using an additional constraint, based onNext, we studied the cis-regulatory input function (Bo-

louri and Davidson, 2002; Buchler et al., 2003; Setty et the fact that FlhDC activates FliA transcription, and,
hence, X activity should preceed Y activation. This leadsal., 2003) that integrates the inputs from the two tran-

scription activators, FlhDC and FliA. We constructed to predicted activity profiles that suggest that, under
the present experimental conditions, FlhDC activity isstrains in which the flhD, fliA, and flgM genes are deleted.

Expressing FliA from an exogenous promoter in this first constant and then drops and that FliA activity begins
to rise at about the same time as the drop in FlhDCstrain shows that the class 2 genes can be activated by

FliA in the absence of FlhDC (Figure 2A). Thus, in a activity (Figure 4C). These dynamics are in reasonable
agreement with direct measurements: we measured FliABoolean approximation, the input functions can be de-

scribed as OR gates over the activity of their two inputs, activity using promoters responsive to FliA but not to
FlhDC (class 3 flagella promoters mecha and mocha)FliA and FlhDC.

To investigate the additivity of the two inputs, we and measured FlhDC activity using a promoter respon-
sive to FlhDC but not to FliA (fliL promoter in whichconstructed strains in which both FliA and FlhDC can

be exogenously coexpressed in a controlled fashion. In the FliA binding site was mutated, termed fliL*). These
reporter strains indicate that FlhDC activity is approxi-this strain, the flhD, fliA, and flgM genes are deleted.

The strain bears three compatible plasmids: one with mately constant at early times and then turns off and that
FliA activity begins to rise when FlhDC activity begins toflhDC under the lac promoter; another with fliA under

the tet promoter, allowing controlled induction using the decrease (Figure 4D).
The present model provides an explanation for theinducers IPTG and aTc, respectively; and a third reporter

plasmid in which one of the flagella promoters controls previously observed temporal order in the GFP dynam-
ics of the class 2 reporter strains (Kalir et al., 2001). InGFP. This strain also had a chromosomal cassette ex-
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