
The complexity of 
cellular networks

Warning: Statistical physics. 
It only works on average.

http://regan.med.harvard.edu/CVBR-course.php



2. Dynamics on Complex Networks
- What do networks do? - 

They CONNECT their nodes.

 Communication
 Traffic

parameters and initial conditions of 2001–2002 seasonal influenza
season and compare the obtained epidemic pattern with the real
data. The results confirm the synchronization effect and the better
agreement with the actual data at the regional level when com-
muting flows are introduced in the model.

Commuting flows therefore alter the hierarchy of epidemic
transmission from region to region. This hierarchical organization
can be inferred by constructing the epidemic invasion tree that
represents the transmission of the infection from one subpopulation
to the other during the history of the epidemic. The stochastic
nature of the epidemic process implies that each realization will
produce a different tree. An overall epidemic invasion network can
be constructed by defining weighted, directed links, Tij, that denote
the probability that the epidemic in subpopulation j is seeded by
individuals belonging to the subpopulation i. This probability is
defined by the ratio between the number of realizations in which we
have a seeding i 3 j and the total number of realizations. When
constructing the epidemic invasion tree we use averages over 103

realizations. Finally, to highlight only the most likely infection tree,
we construct the minimum spanning tree from the world-seeding
subpopulation where we minimize the distance defined on each link
as !1 " Tij. In Fig. 4, we show the infection arrival time hierarchy
in the two considered scenarios for the continental U.S. In the
absence of commuting (Fig. 4A), airline hubs have a predominant
role and are completely responsible for spreading the disease to
every other location through direct air connections. This feature
leads to the counterintuitive effect that locations near a large
airport, but with no frequent direct flight to that airport, can be
infected only much later through a convoluted sequence of flights.
On the other hand, when we superimpose the commuting network
we obtain the expected effect of reducing the importance of large
airports and increasing the locality of the epidemic spread (Fig. 4B).
The inclusion of commuting patterns is therefore relevant in the
evaluation of the epidemic invasion path and timing.

Conclusions
Data collected from 29 countries in five continents were used to fit
a gravity law that was then used to model commuting behavior
between the Voronoi geographical census areas built around every

airport indexed by IATA. The effect of adding this short-range
commuting network to a worldwide epidemic model including all
airline traffic flowing among 3,362 airport locations allows us to
discriminate the main contribution of the long- and short-range
mobility flows. The impact of the epidemic does not change as the
competition between the long- and short-range coupling acts only
at the beginning of the epidemic in each subpopulation. Both
coupling terms become a second-order effect once the epidemic
ramps up and the major force of infection is endogenous to the
subpopulation. Therefore, both coupling mechanisms affect just the
hierarchy of epidemic progression and its timing. On the one hand,
the global epidemic behavior is governed by the long-range airline
traffic that determines the arrival of infectious individuals on a
worldwide scale. At the local level, however, the short-range
epidemic coupling induced by commuting flows creates a synchrony
between neighboring regions and a local diffusive pattern with the
epidemic flowing from subpopulations with major hubs into the
neighboring subpopulations. These results clearly show that the
level of detail on the mobility networks can be chosen according to
the scale of interest. Neglecting local coupling for instance does not
produce a dramatic effect if one is mainly interested in the global
overall pattern at the granularity level of a large geographical area
or country. On the other hand, more refined strategies that require
access to finer granularity can be implemented by the progressive
addition of details without radically altering the perspective
achieved at the larger scales. This is extremely important in the
balance between computational time and flexibility of models and
becomes very relevant when computational approaches are used in
real time to aid the decision process for a public health emergency.
The present analysis opens the path to quantitative approximation
schemes that calibrate the level of data resolution and the needed
computational resources with respect to the accuracy in the de-
scription of the epidemics.

Materials and Methods
Voronoi Tessellation Around Main Transportation Hubs. We define the geo-
graphical census areas centered around IATA airports by assigning the popula-
tion of each cell of 15 # 15 minutes of arc to the closest airport within the same
country. Such a procedure defines a Voronoi-like tessellation (32) for the popu-

Fig. 4. Epidemic invasive tree. (A and B) Geographical representation of the continental U.S. epidemic invasion tree with only airline traffic (A) and when both airline
traffic and commuting are considered (B). Red represents the roots (i.e., the first cities that were seeded from abroad), and, as we move down the tree, the colors change
from yellow to dark blue. The arrows representing the edges of the tree are colored as the parent node. (C and D) We also provide a schematic representation of the
invasion tree rooted at Chicago when only flights are considered (C) and with both air traffic and commuting (D). As demonstrated in both examples, the spreading
pathway is completely dominated by the airline hubs as the only sources of imported seeds. However, the hierarchy is broken by the introduction of commuting flows
as the number of shells around the airline hubs and the branches at the secondary nodes increase.

21488 ! www.pnas.org"cgi"doi"10.1073"pnas.0906910106 Balcan et al.

 Spreading processes

WHY?



- Robustness and Vulnerability - 
Albert & Barabási, 2000 : the Achilles Heel of the Internet
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are believed to have a diameter of around six21. To compare the two
network models properly, we generated networks that have the same
number of nodes and links, such that P(k) follows a Poisson
distribution for the exponential network, and a power law for the
scale-free network.

To address the error tolerance of the networks, we study the
changes in diameter when a small fraction f of the nodes is removed.
The malfunctioning (absence) of any node in general increases the
distance between the remaining nodes, as it can eliminate some
paths that contribute to the system’s interconnectedness. Indeed, for
the exponential network the diameter increases monotonically with
f (Fig. 2a); thus, despite its redundant wiring (Fig. 1), it is increas-
ingly difficult for the remaining nodes to communicate with each
other. This behaviour is rooted in the homogeneity of the network:
since all nodes have approximately the same number of links, they
all contribute equally to the network’s diameter, thus the removal of
each node causes the same amount of damage. In contrast, we
observe a drastically different and surprising behaviour for the
scale-free network (Fig. 2a): the diameter remains unchanged under
an increasing level of errors. Thus even when as many as 5% of

the nodes fail, the communication between the remaining nodes
in the network is unaffected. This robustness of scale-free net-
works is rooted in their extremely inhomogeneous connectivity
distribution: because the power-law distribution implies that the
majority of nodes have only a few links, nodes with small
connectivity will be selected with much higher probability. The
removal of these ‘small’ nodes does not alter the path structure of
the remaining nodes, and thus has no impact on the overall network
topology.

An informed agent that attempts to deliberately damage a net-
work will not eliminate the nodes randomly, but will preferentially
target the most connected nodes. To simulate an attack we first
remove the most connected node, and continue selecting and
removing nodes in decreasing order of their connectivity k. Measur-
ing the diameter of an exponential network under attack, we find
that, owing to the homogeneity of the network, there is no
substantial difference whether the nodes are selected randomly or
in decreasing order of connectivity (Fig. 2a). On the other hand, a
drastically different behaviour is observed for scale-free networks.
When the most connected nodes are eliminated, the diameter of the
scale-free network increases rapidly, doubling its original value if
5% of the nodes are removed. This vulnerability to attacks is rooted
in the inhomogeneity of the connectivity distribution: the connec-
tivity is maintained by a few highly connected nodes (Fig. 1b),
whose removal drastically alters the network’s topology, and
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Figure 3 Network fragmentation under random failures and attacks. The relative size of
the largest cluster S (open symbols) and the average size of the isolated clusters 〈s〉 (filled
symbols) as a function of the fraction of removed nodes f for the same systems as in
Fig. 2. The size S is defined as the fraction of nodes contained in the largest cluster (that is,
S ¼ 1 for f ¼ 0). a, Fragmentation of the exponential network under random failures
(squares) and attacks (circles). b, Fragmentation of the scale-free network under random
failures (blue squares) and attacks (red circles). The inset shows the error tolerance curves
for the whole range of f, indicating that the main cluster falls apart only after it has been
completely deflated. We note that the behaviour of the scale-free network under errors is
consistent with an extremely delayed percolation transition: at unrealistically high error
rates ( f max ! 0:75) we do observe a very small peak in 〈s〉 (〈smax〉 ! 1:06) even in the
case of random failures, indicating the existence of a critical point. For a and b we
repeated the analysis for systems of sizes N ¼ 1;000, 5,000 and 20,000, finding that the
obtained S and 〈s〉 curves overlap with the one shown here, indicating that the overall
clustering scenario and the value of the critical point is independent of the size of the
system. c, d, Fragmentation of the Internet (c) and WWW (d), using the topological data
described in Fig. 2. The symbols are the same as in b. 〈s〉 in d in the case of attack is
shown on a different scale, drawn in the right side of the frame. Whereas for small f we
have 〈s〉 ! 1:5, at f w

c ¼ 0:067 the average fragment size abruptly increases, peaking at
〈smax〉 ! 60, then decays rapidly. For the attack curve in d we ordered the nodes as a
function of the number of outgoing links, kout. We note that while the three studied
networks, the scale-free model, the Internet and the WWW have different g, 〈k〉 and
clustering coefficient11, their response to attacks and errors is identical. Indeed, we find
that the difference between these quantities changes only fc and the magnitude of d, S
and 〈s〉, but not the nature of the response of these networks to perturbations.
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Figure 4 Summary of the response of a network to failures or attacks. a–f, The cluster
size distribution for various values of f when a scale-free network of parameters given in
Fig. 3b is subject to random failures (a–c) or attacks (d–f). Upper panels, exponential
networks under random failures and attacks and scale-free networks under attacks
behave similarly. For small f, clusters of different sizes break down, although there is still a
large cluster. This is supported by the cluster size distribution: although we see a few
fragments of sizes between 1 and 16, there is a large cluster of size 9,000 (the size of the
original system being 10,000). At a critical fc (see Fig. 3) the network breaks into small
fragments between sizes 1 and 100 (b) and the large cluster disappears. At even higher f
(c) the clusters are further fragmented into single nodes or clusters of size two. Lower
panels, scale-free networks follow a different scenario under random failures: the size of
the largest cluster decreases slowly as first single nodes, then small clusters break off.
Indeed, at f ¼ 0:05 only single and double nodes break off (d). At f ¼ 0:18, the network
is fragmented (b) under attack, but under failures the large cluster of size 8,000 coexists
with isolated clusters of sizes 1 to 5 (e). Even for an unrealistically high error rate of
f ¼ 0:45 the large cluster persists, the size of the broken-off fragments not exceeding
11 (f).
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are believed to have a diameter of around six21. To compare the two
network models properly, we generated networks that have the same
number of nodes and links, such that P(k) follows a Poisson
distribution for the exponential network, and a power law for the
scale-free network.

To address the error tolerance of the networks, we study the
changes in diameter when a small fraction f of the nodes is removed.
The malfunctioning (absence) of any node in general increases the
distance between the remaining nodes, as it can eliminate some
paths that contribute to the system’s interconnectedness. Indeed, for
the exponential network the diameter increases monotonically with
f (Fig. 2a); thus, despite its redundant wiring (Fig. 1), it is increas-
ingly difficult for the remaining nodes to communicate with each
other. This behaviour is rooted in the homogeneity of the network:
since all nodes have approximately the same number of links, they
all contribute equally to the network’s diameter, thus the removal of
each node causes the same amount of damage. In contrast, we
observe a drastically different and surprising behaviour for the
scale-free network (Fig. 2a): the diameter remains unchanged under
an increasing level of errors. Thus even when as many as 5% of

the nodes fail, the communication between the remaining nodes
in the network is unaffected. This robustness of scale-free net-
works is rooted in their extremely inhomogeneous connectivity
distribution: because the power-law distribution implies that the
majority of nodes have only a few links, nodes with small
connectivity will be selected with much higher probability. The
removal of these ‘small’ nodes does not alter the path structure of
the remaining nodes, and thus has no impact on the overall network
topology.

An informed agent that attempts to deliberately damage a net-
work will not eliminate the nodes randomly, but will preferentially
target the most connected nodes. To simulate an attack we first
remove the most connected node, and continue selecting and
removing nodes in decreasing order of their connectivity k. Measur-
ing the diameter of an exponential network under attack, we find
that, owing to the homogeneity of the network, there is no
substantial difference whether the nodes are selected randomly or
in decreasing order of connectivity (Fig. 2a). On the other hand, a
drastically different behaviour is observed for scale-free networks.
When the most connected nodes are eliminated, the diameter of the
scale-free network increases rapidly, doubling its original value if
5% of the nodes are removed. This vulnerability to attacks is rooted
in the inhomogeneity of the connectivity distribution: the connec-
tivity is maintained by a few highly connected nodes (Fig. 1b),
whose removal drastically alters the network’s topology, and
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Figure 3 Network fragmentation under random failures and attacks. The relative size of
the largest cluster S (open symbols) and the average size of the isolated clusters 〈s〉 (filled
symbols) as a function of the fraction of removed nodes f for the same systems as in
Fig. 2. The size S is defined as the fraction of nodes contained in the largest cluster (that is,
S ¼ 1 for f ¼ 0). a, Fragmentation of the exponential network under random failures
(squares) and attacks (circles). b, Fragmentation of the scale-free network under random
failures (blue squares) and attacks (red circles). The inset shows the error tolerance curves
for the whole range of f, indicating that the main cluster falls apart only after it has been
completely deflated. We note that the behaviour of the scale-free network under errors is
consistent with an extremely delayed percolation transition: at unrealistically high error
rates ( f max ! 0:75) we do observe a very small peak in 〈s〉 (〈smax〉 ! 1:06) even in the
case of random failures, indicating the existence of a critical point. For a and b we
repeated the analysis for systems of sizes N ¼ 1;000, 5,000 and 20,000, finding that the
obtained S and 〈s〉 curves overlap with the one shown here, indicating that the overall
clustering scenario and the value of the critical point is independent of the size of the
system. c, d, Fragmentation of the Internet (c) and WWW (d), using the topological data
described in Fig. 2. The symbols are the same as in b. 〈s〉 in d in the case of attack is
shown on a different scale, drawn in the right side of the frame. Whereas for small f we
have 〈s〉 ! 1:5, at f w

c ¼ 0:067 the average fragment size abruptly increases, peaking at
〈smax〉 ! 60, then decays rapidly. For the attack curve in d we ordered the nodes as a
function of the number of outgoing links, kout. We note that while the three studied
networks, the scale-free model, the Internet and the WWW have different g, 〈k〉 and
clustering coefficient11, their response to attacks and errors is identical. Indeed, we find
that the difference between these quantities changes only fc and the magnitude of d, S
and 〈s〉, but not the nature of the response of these networks to perturbations.
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Figure 4 Summary of the response of a network to failures or attacks. a–f, The cluster
size distribution for various values of f when a scale-free network of parameters given in
Fig. 3b is subject to random failures (a–c) or attacks (d–f). Upper panels, exponential
networks under random failures and attacks and scale-free networks under attacks
behave similarly. For small f, clusters of different sizes break down, although there is still a
large cluster. This is supported by the cluster size distribution: although we see a few
fragments of sizes between 1 and 16, there is a large cluster of size 9,000 (the size of the
original system being 10,000). At a critical fc (see Fig. 3) the network breaks into small
fragments between sizes 1 and 100 (b) and the large cluster disappears. At even higher f
(c) the clusters are further fragmented into single nodes or clusters of size two. Lower
panels, scale-free networks follow a different scenario under random failures: the size of
the largest cluster decreases slowly as first single nodes, then small clusters break off.
Indeed, at f ¼ 0:05 only single and double nodes break off (d). At f ¼ 0:18, the network
is fragmented (b) under attack, but under failures the large cluster of size 8,000 coexists
with isolated clusters of sizes 1 to 5 (e). Even for an unrealistically high error rate of
f ¼ 0:45 the large cluster persists, the size of the broken-off fragments not exceeding
11 (f).
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- Statistical physics loves these models! - 

• random failure scenarios map to percolation problems
• p - probability of a link (node) being 
“open”
• phase transition between subcritical and 
supercritical states

0

1
probability of a path across the plane

ppc

Random 
network: bond 
percolation on a 
complete graph!

• assortative networks
➡ more resilient to random failure
➡ more vulnerable to attack

➡percolation threshold in scale-free networks is at pc = 0



- Cascading failures - 

Transmission (flow) of 
some conserved quantity

 (Money)

 Electric power

Metabolite mass

Information 
packets



- Cascading failures - 

Reason: when a node fails, it stops doing 
its share. Neighbours become overworked.

Motter and Lai, 2002:
• load bearing capacity ∼ betweenness
• every pair of nodes exchanges 1 
packet / timestep

scale-free networks MORE 
vulnerable to cascading 
failure of random nodes

Importance of largest 
betweennes nodes!



- A surprising quick-fix - 

Motter, 2004: REMOVE / DISCONNECT nodes that carry small 
amounts of load:
• then generate more load than they carry
• their paths to the system are large -> burden many 
intermediary nodes

and !i are positively correlated. Therefore we only need
to justify one of the strategies of defense (1)–(4). Consider
then strategy (1).

Strategy (1) consists in removing a fraction f of nodes
with most negative !i. In order to reduce the size of a
cascade triggered by an initial attack, these IRs have to
satisfy two conditions. The first condition is to reduce the
load on the remaining nodes in the network. Because !i is
negatively correlated with "Di, the removal of nodes with
!i < 0 tends to reduce the average shortest path length "D
between the nodes that remain connected to the largest
component. The average load "L on a node of this compo-
nent is proportional to both "D! 1 and the number of
other nodes in the same component, and is therefore
reduced with strategy (1). This argument is based on the
initial network W "0# but, for large random networks, the
same is expected to hold true on W "1# as well. The
second condition is that the fragmentation caused by the
IRs must be smaller than that otherwise caused by the
cascade itself, i.e., ~G>G0, where ~G and G0 denote the
fraction of nodes remaining in the largest connected
component right after the IRs and after the cascade
without defense, respectively. Because !i is positively
correlated with the degree !i, the nodes removed accord-
ing to strategy (1) tend to be the least connected nodes in
the network. It is well known that most of the (unre-
moved) nodes remain in a single connected component
when any fraction of least connected nodes is removed
[2,3]. More specifically, for small p, ~G is expected to
decrease linearly as ~G $ 1% f with the fraction f of
nodes removed according to strategy (1). Therefore, the
second condition is satisfied even for relatively large f
insofar as f < 1%G0. The ratio G for the cascade with
defense is G& ' ~G%! ~G, where ! ~G is due to the propa-
gation of the cascade. Gathering all these, because ~G
decreases slowly with increasing f, there should be a
certain f < 1%G0 for which ~G is large (as compared
to G0) and the average load on the remaining nodes is
sufficiently reduced so that the propagation of the cascade
is strongly suppressed and ! ~G is small. Therefore strategy
(1) is expected to be effective in reducing the size of
global cascades. Because of the correlations mentioned
above, the same is expected for the strategies (2)–(4).

On the other hand, the network is expected to be
sensitive to the removal of nodes with large !i and, due
to the correlations [21], to the removal of nodes with large
"D%1
i , Li, and !i as well. All these quantities can be

regarded as measures of centrality. Therefore our first
result could be stated as follows: while the removal of
the most central nodes of W "0# can trigger global cas-
cades, the removal of the least central nodes of W "1# can
drastically reduce the size of these cascades.

Now we present numerical verification of our result
concerning the IR of nodes. We consider random SFNs
with scaling exponent " and initial attacks on a small
fraction p ( 1 of most loaded nodes. Strong evidence for

our result is presented in Fig. 1(a), where we show the
ratio G as a function of the tolerance parameter # for " '
3:0 and p ' 0:001. Without defense, this initial attack on
only 0:1% of the nodes triggers global cascades even for
relatively large values of the tolerance parameter #
[Fig. 1(a), stars]. However, the ratio G is shown to be
significantly larger when a suitable fraction of nodes is
intentionally removed according to any of the strategies
of defense (1)–(4) [Fig. 1(a), open symbols]. For example,
for # ' 1:5, we have G $ 0:6 with defense and G $ 0:06
without it. A similar improvement is observed for other
values of the scaling exponent ". As a function of the
fraction f of IRs, the ratio G displays a well-defined
maximum, as shown in Fig. 1(b) for # ' 1:5. When f is
large, the propagation of the cascade is strongly sup-
pressed and nearly all the damage is caused by the IRs,
i.e., G is approximately 1% f. When f is small, most of
the damage is caused by the cascade itself. The maximum
of G lies in a region of intermediate f where the propa-
gation of the cascade is significantly suppressed and the
damage caused by the IRs is relatively small. The results
presented in Fig. 1(a) correspond to this maximum. The
almost perfect agreement between the different strategies
of defense in Figs. 1(a) and 1(b) is due to the strong
correlations between loads, path lengths, and degrees in
random SFNs.

We now turn to the IR of edges. We argue that the size
of the cascade can be drastically reduced with the IR of
edges not necessarily connected to the nodes removed in
the IR of nodes. In analogy to the load on nodes, we define
the load Le

ij on an edge between nodes i and j as the total
amount of packets passing through that edge per unit of
time. The load Li on node i can be expressed in terms of
the load on edges as

Li '
1

2

X

j)i
Le
ij ! "Ni % 1#; (4)

where the sum is over all the edges directly connected to
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FIG. 1. (a) Ratio G as a function of the tolerance parameter #.
Stars correspond to attacks without defense, while open circles,
squares, triangles, and diamonds correspond to the IR of nodes
according to the strategies of defense (1)–(4), respectively.
(b) Ratio G as a function of the fraction f of nodes intention-
ally removed according to each of the strategies (1)–(4), for
# ' 1:5. Solid circles in (a) correspond to the IR of edges for
$ ' 2#. Each curve corresponds to an average over 20 inde-
pendent realizations of the network for " ' 3:0, !0 ' 2, N '
5000, and p ' 0:001.
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- Predicted to work in E.coli’s TCA cycle! - 

the Lazarus effect, and 17 candidates for suboptimal recovery
(see Figure 4A). Most of the mutants miss genes involved in
the central metabolism, while a fewmiss genes that participate
in amino-acid metabolism and transport processes. Of
particular interest are mutants with the genes pfk, fbaA, or
tpiA deleted, whose essentiality has been tested and is
supported by experiments (Fraenkel, 1987). As we show in
Supplementary Table SI and Figure 4A, the growth rate of these
mutants is restored by additional targeted gene deletions that
increase the suboptimal growth rate from zero to more than
45% of the wild-type growth rate.
In Figure 4Bwe show that, for variousmedia, the increase in

the biomass production rate obtained after the deletion of a
single rescue gene can be more than 10% of the wild-type
rate. In other cases, however, we need to simultaneously
delete several genes to rescue growth. This is illustrated in
Figure 3B, where we show that the growth performance of

non-viable tpiA-deficient mutants in a glucose medium
can be restored only through the concurrent deletion of
six genes, aceA, gadA, gadB, lpdA, tynA, and gpt, representing
a six-viable set, which is the converse of the k-robust
set necessary to suppress cellular growth (Deutscher et al,
2006). The suboptimal tpiA mutant uses the glyoxylate
pathway, which is shut down by these rescue deletions.
Our prediction, that the glyoxylate pathway is not needed in
the optimal state, is supported by a recent experimental
observation (Fong et al, 2006). This observation indicates that
the flux of the glyoxylate pathway in viable but not fully
evolved tpiA mutants is initially non-zero. However, over the
course of a few weeks of adaptive evolution in glucose media,
the glyoxylate flux converges to zero (Fong et al, 2006). Once
the six genes are absent, the concurrent deletion of additional
genes can further increase the organism’s growth rate
(Figure 3B).
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Figure 2 Distribution of metabolic fluxes in the E. coli ’s TCA cycle in arabinose minimal medium for (A) wild-type organism predicted by FBA, (B) fbaA mutant
predicted by MOMA, (C) optimal state of fbaA mutant predicted by FBA, and (D) fbaA mutant with the rescue deletions of genes aceA and sucAB, predicted by
MOMA. Key flux changes are highlighted in orange. Note that the metabolic flux pattern predicted by MOMA after the fbaA deletion (B) is similar to the wild-type fluxes
(A). With the rescue deletions, however, MOMA-predicted fluxes (D) are brought closer to the FBA-predicted fluxes (C), restoring the organisms’ ability to produce
biomass. While we show a double deletion for its pedagogical value, we note that the deletion of aceA alone is sufficient to rescue the mutant (see Figure 3A) and that
the mutant can also be rescued with other single-gene deletions (see Figure 4B and Supplementary Information).
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the Lazarus effect, and 17 candidates for suboptimal recovery
(see Figure 4A). Most of the mutants miss genes involved in
the central metabolism, while a fewmiss genes that participate
in amino-acid metabolism and transport processes. Of
particular interest are mutants with the genes pfk, fbaA, or
tpiA deleted, whose essentiality has been tested and is
supported by experiments (Fraenkel, 1987). As we show in
Supplementary Table SI and Figure 4A, the growth rate of these
mutants is restored by additional targeted gene deletions that
increase the suboptimal growth rate from zero to more than
45% of the wild-type growth rate.
In Figure 4Bwe show that, for variousmedia, the increase in

the biomass production rate obtained after the deletion of a
single rescue gene can be more than 10% of the wild-type
rate. In other cases, however, we need to simultaneously
delete several genes to rescue growth. This is illustrated in
Figure 3B, where we show that the growth performance of

non-viable tpiA-deficient mutants in a glucose medium
can be restored only through the concurrent deletion of
six genes, aceA, gadA, gadB, lpdA, tynA, and gpt, representing
a six-viable set, which is the converse of the k-robust
set necessary to suppress cellular growth (Deutscher et al,
2006). The suboptimal tpiA mutant uses the glyoxylate
pathway, which is shut down by these rescue deletions.
Our prediction, that the glyoxylate pathway is not needed in
the optimal state, is supported by a recent experimental
observation (Fong et al, 2006). This observation indicates that
the flux of the glyoxylate pathway in viable but not fully
evolved tpiA mutants is initially non-zero. However, over the
course of a few weeks of adaptive evolution in glucose media,
the glyoxylate flux converges to zero (Fong et al, 2006). Once
the six genes are absent, the concurrent deletion of additional
genes can further increase the organism’s growth rate
(Figure 3B).

0.130.13

0.1

0.1

4.8

0.26

4.7

0.24

0

0

4.7

Biomass building

4.8

4.0

3.6

0.02

Phenylalanine

Tyrosine

SUCCOA

OA

0.8

0.13

Phenylalanine

Tyrosine

SUCCOA

OA

0 0

0

0

0 0 0
1.5

1.5

1.5

4.8

blocks

3.5

3.5

2.0

0.5
1.5

6.7

5.2

 Wild type Suboptimal after
deletion (MOMA)

0.26

0.23

F6P DX5PDX5P

0

Phenylalanine

Tyrosine

SUCCOA

OA

0

0.130.13

0

0

0.02

Phenylalanine

Tyrosine

SUCCOA

OA

0.8

0.8

0.8

0.8

0.36

0.8

1.2

0

0.01

0.01

0.01

0.01

0.8

0.02

0.004

0.09

0.09

0.23 0.25

0.11

3.0

3.0

3.0

3.0
0.02

0.02

0.001

Rescued: suboptimal
after second deletionPentose

F6P DX5P

0.02

0.020.22

0.25

DX5POptimal after deletion (FBA) F6P

F6P

L– lysine L– lysine

L– lysineL– lysine

phosphate
pathway

Pentose
phosphate
pathway

phosphate
pathway

phosphate
pathway

5.44

5.46

5.44

Pentose

Pentose

L–arabinose

L–arabinose

L–arabinose

L–arabinose

1.1 3.7

0

dapF
sucAB

dapF
sucAB

dapF
sucAB

sucAB
dapF

fumABC

acnAB

icd

prpC
gltA

mdh

aceA

glcB
aceB

lysA

fbaA

tyrB pheA

tyrA

aspC
tyrB

sucCD

fumABC

acnAB

icd

prpC
gltA

mdh

aceA

glcB
aceB

lysA

fbaA

tyrB pheA

tyrA

aspC
tyrB

sucCD

Glyoxylate
fumABC

acnAB

icd

prpC
gltA

mdh

aceA

glcB
aceB

lysA

fbaA

tyrB pheA

tyrA

aspC
tyrB

sucCD

Glyoxylate

tyrB pheA

fbaA

tyrA
tyrB
aspC

mdh
gltA
prpC

acnAB

aceA

aceB
glcB

fumABC

sucCD

icd

lysA

Glyoxylate Glyoxylate

Figure 2 Distribution of metabolic fluxes in the E. coli ’s TCA cycle in arabinose minimal medium for (A) wild-type organism predicted by FBA, (B) fbaA mutant
predicted by MOMA, (C) optimal state of fbaA mutant predicted by FBA, and (D) fbaA mutant with the rescue deletions of genes aceA and sucAB, predicted by
MOMA. Key flux changes are highlighted in orange. Note that the metabolic flux pattern predicted by MOMA after the fbaA deletion (B) is similar to the wild-type fluxes
(A). With the rescue deletions, however, MOMA-predicted fluxes (D) are brought closer to the FBA-predicted fluxes (C), restoring the organisms’ ability to produce
biomass. While we show a double deletion for its pedagogical value, we note that the deletion of aceA alone is sufficient to rescue the mutant (see Figure 3A) and that
the mutant can also be rescued with other single-gene deletions (see Figure 4B and Supplementary Information).
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the Lazarus effect, and 17 candidates for suboptimal recovery
(see Figure 4A). Most of the mutants miss genes involved in
the central metabolism, while a fewmiss genes that participate
in amino-acid metabolism and transport processes. Of
particular interest are mutants with the genes pfk, fbaA, or
tpiA deleted, whose essentiality has been tested and is
supported by experiments (Fraenkel, 1987). As we show in
Supplementary Table SI and Figure 4A, the growth rate of these
mutants is restored by additional targeted gene deletions that
increase the suboptimal growth rate from zero to more than
45% of the wild-type growth rate.
In Figure 4Bwe show that, for variousmedia, the increase in

the biomass production rate obtained after the deletion of a
single rescue gene can be more than 10% of the wild-type
rate. In other cases, however, we need to simultaneously
delete several genes to rescue growth. This is illustrated in
Figure 3B, where we show that the growth performance of

non-viable tpiA-deficient mutants in a glucose medium
can be restored only through the concurrent deletion of
six genes, aceA, gadA, gadB, lpdA, tynA, and gpt, representing
a six-viable set, which is the converse of the k-robust
set necessary to suppress cellular growth (Deutscher et al,
2006). The suboptimal tpiA mutant uses the glyoxylate
pathway, which is shut down by these rescue deletions.
Our prediction, that the glyoxylate pathway is not needed in
the optimal state, is supported by a recent experimental
observation (Fong et al, 2006). This observation indicates that
the flux of the glyoxylate pathway in viable but not fully
evolved tpiA mutants is initially non-zero. However, over the
course of a few weeks of adaptive evolution in glucose media,
the glyoxylate flux converges to zero (Fong et al, 2006). Once
the six genes are absent, the concurrent deletion of additional
genes can further increase the organism’s growth rate
(Figure 3B).
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Figure 2 Distribution of metabolic fluxes in the E. coli ’s TCA cycle in arabinose minimal medium for (A) wild-type organism predicted by FBA, (B) fbaA mutant
predicted by MOMA, (C) optimal state of fbaA mutant predicted by FBA, and (D) fbaA mutant with the rescue deletions of genes aceA and sucAB, predicted by
MOMA. Key flux changes are highlighted in orange. Note that the metabolic flux pattern predicted by MOMA after the fbaA deletion (B) is similar to the wild-type fluxes
(A). With the rescue deletions, however, MOMA-predicted fluxes (D) are brought closer to the FBA-predicted fluxes (C), restoring the organisms’ ability to produce
biomass. While we show a double deletion for its pedagogical value, we note that the deletion of aceA alone is sufficient to rescue the mutant (see Figure 3A) and that
the mutant can also be rescued with other single-gene deletions (see Figure 4B and Supplementary Information).
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the Lazarus effect, and 17 candidates for suboptimal recovery
(see Figure 4A). Most of the mutants miss genes involved in
the central metabolism, while a fewmiss genes that participate
in amino-acid metabolism and transport processes. Of
particular interest are mutants with the genes pfk, fbaA, or
tpiA deleted, whose essentiality has been tested and is
supported by experiments (Fraenkel, 1987). As we show in
Supplementary Table SI and Figure 4A, the growth rate of these
mutants is restored by additional targeted gene deletions that
increase the suboptimal growth rate from zero to more than
45% of the wild-type growth rate.
In Figure 4Bwe show that, for variousmedia, the increase in

the biomass production rate obtained after the deletion of a
single rescue gene can be more than 10% of the wild-type
rate. In other cases, however, we need to simultaneously
delete several genes to rescue growth. This is illustrated in
Figure 3B, where we show that the growth performance of

non-viable tpiA-deficient mutants in a glucose medium
can be restored only through the concurrent deletion of
six genes, aceA, gadA, gadB, lpdA, tynA, and gpt, representing
a six-viable set, which is the converse of the k-robust
set necessary to suppress cellular growth (Deutscher et al,
2006). The suboptimal tpiA mutant uses the glyoxylate
pathway, which is shut down by these rescue deletions.
Our prediction, that the glyoxylate pathway is not needed in
the optimal state, is supported by a recent experimental
observation (Fong et al, 2006). This observation indicates that
the flux of the glyoxylate pathway in viable but not fully
evolved tpiA mutants is initially non-zero. However, over the
course of a few weeks of adaptive evolution in glucose media,
the glyoxylate flux converges to zero (Fong et al, 2006). Once
the six genes are absent, the concurrent deletion of additional
genes can further increase the organism’s growth rate
(Figure 3B).
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Figure 2 Distribution of metabolic fluxes in the E. coli ’s TCA cycle in arabinose minimal medium for (A) wild-type organism predicted by FBA, (B) fbaA mutant
predicted by MOMA, (C) optimal state of fbaA mutant predicted by FBA, and (D) fbaA mutant with the rescue deletions of genes aceA and sucAB, predicted by
MOMA. Key flux changes are highlighted in orange. Note that the metabolic flux pattern predicted by MOMA after the fbaA deletion (B) is similar to the wild-type fluxes
(A). With the rescue deletions, however, MOMA-predicted fluxes (D) are brought closer to the FBA-predicted fluxes (C), restoring the organisms’ ability to produce
biomass. While we show a double deletion for its pedagogical value, we note that the deletion of aceA alone is sufficient to rescue the mutant (see Figure 3A) and that
the mutant can also be rescued with other single-gene deletions (see Figure 4B and Supplementary Information).
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that even if XA!XB , there is some probability of choosing

and sending a packet to A . Second, we can recover the de-

terministic model by letting !→" . Also, if we set !"0, we
have a completely random choice of A and B , i.e., A and B

will be chosen with equal probability of 0.5 regardless of XA

and XB . Hence, ! is a control parameter that determines the

degree of randomness of path selection.

III. SIMULATION RESULTS

We quantify network traffic congestion by the average

‘‘lifetime’’ of a packet #L$, which is the average time be-
tween the sending and receiving of a packet. %Averages are
taken over packets.& In Fig. 1%b& we show the behavior of

#L$ as we change the creation rate ' of the packet using the
deterministic routing. The simulation is performed with vari-

ous system sizes of N , and the system is run up to time step

10 000. The phase transition behavior is clearly observable

as ' increases beyond a ‘‘critical rate,’’ 'c . This transition

into the congestion phase is sharper with increasing size, as

seen in other physical systems showing phase transitions.

Such sudden change into a congestion state with increasing

flow of packets is observed in a real computer network.

Thus, even though our model is simple, omitting several

properties of real computer networks, it can capture some
qualitative behavior of the traffic.
We now turn our attention to comparison of the determin-

istic routing with the proposed probabilistic routing. One
such example is shown in Fig. 2. We can see that the onset of
phase transition is moved to higher ' , showing that the
model network with probabilistic routing can tolerate more
packets before going into a congestion phase.
To examine the effect of randomness for this shift of

phase transition point, we plot in Fig. 3%a& the phase transi-
tion points as a function of ! . We see that we need to choose
! appropriately ()0.01 in Fig. 3%a&* to have the optimal
phase point shift. This existence of an optimal amount of
randomness for system performance is similar to the cases of
‘‘stochastic resonance’’ (3* and ‘‘simulated annealing’’ (4*.
For individual routers, the deterministic routing appears to be
the most balanced way of sending packets to the next router.
Use of the probabilistic routing strategy means that this bal-
ance is sometimes intentionally upset. The fact that easing of
the phase transition point nonetheless takes place means that
an emergent collective behavior of routers is playing a cru-
cial role in deciding the congestion nature of the network.
To gain more insight into the collective behavior of the

model, we investigate how the phase transition point changes

when only a portion of the routers have the probabilistic

routing and others operate using the deterministic routing; a

representative example is shown in Fig. 3%b&. We see that the
critical points of phase transition change nonlinearly and

show saturation as a function of the proportion of probabi-

listic routers. From a system design point of view, this re-

sponse shape indicates a possibility of fault tolerance: the

effectiveness of the system does not deteriorate appreciably

until a certain proportion of routers become nonprobabilistic.

This nonlinear shape together with phase transition behavior

suggests that the collective behavior of the model is not sim-

ply an aggregation of the effect of individual routers. Rather,

the interaction among routers, which is indirectly mediated

by packets passing through, is playing a role in the collective

behavior of the model system.

IV. DISCUSSION

The emergent behavior observed here with our model is

rather intricate to analyze theoretically, particularly in deal-

FIG. 1. Model network architecture and phase transition behav-

ior with deterministic routing measured in average lifetime of a

packet #L$ as we vary packet creation rate ' . The system size is

varied as N" 25 %diamond&, 50 %star&, 100 %square&, 150 %triangle&,
and 250 %circle&. The lines are drawn for the reader’s convenience.

FIG. 2. Comparison of the phase transition behavior of the de-

terministic %a& and the probabilistic (!"0.008) %b& routing for #L$.
The system size is N"25. A similar graph is obtained for other

values of N .
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that even if XA!XB , there is some probability of choosing

and sending a packet to A . Second, we can recover the de-

terministic model by letting !→" . Also, if we set !"0, we
have a completely random choice of A and B , i.e., A and B

will be chosen with equal probability of 0.5 regardless of XA

and XB . Hence, ! is a control parameter that determines the

degree of randomness of path selection.

III. SIMULATION RESULTS

We quantify network traffic congestion by the average

‘‘lifetime’’ of a packet #L$, which is the average time be-
tween the sending and receiving of a packet. %Averages are
taken over packets.& In Fig. 1%b& we show the behavior of

#L$ as we change the creation rate ' of the packet using the
deterministic routing. The simulation is performed with vari-

ous system sizes of N , and the system is run up to time step

10 000. The phase transition behavior is clearly observable

as ' increases beyond a ‘‘critical rate,’’ 'c . This transition

into the congestion phase is sharper with increasing size, as

seen in other physical systems showing phase transitions.

Such sudden change into a congestion state with increasing

flow of packets is observed in a real computer network.

Thus, even though our model is simple, omitting several

properties of real computer networks, it can capture some
qualitative behavior of the traffic.
We now turn our attention to comparison of the determin-

istic routing with the proposed probabilistic routing. One
such example is shown in Fig. 2. We can see that the onset of
phase transition is moved to higher ' , showing that the
model network with probabilistic routing can tolerate more
packets before going into a congestion phase.
To examine the effect of randomness for this shift of

phase transition point, we plot in Fig. 3%a& the phase transi-
tion points as a function of ! . We see that we need to choose
! appropriately ()0.01 in Fig. 3%a&* to have the optimal
phase point shift. This existence of an optimal amount of
randomness for system performance is similar to the cases of
‘‘stochastic resonance’’ (3* and ‘‘simulated annealing’’ (4*.
For individual routers, the deterministic routing appears to be
the most balanced way of sending packets to the next router.
Use of the probabilistic routing strategy means that this bal-
ance is sometimes intentionally upset. The fact that easing of
the phase transition point nonetheless takes place means that
an emergent collective behavior of routers is playing a cru-
cial role in deciding the congestion nature of the network.
To gain more insight into the collective behavior of the

model, we investigate how the phase transition point changes

when only a portion of the routers have the probabilistic

routing and others operate using the deterministic routing; a

representative example is shown in Fig. 3%b&. We see that the
critical points of phase transition change nonlinearly and

show saturation as a function of the proportion of probabi-

listic routers. From a system design point of view, this re-

sponse shape indicates a possibility of fault tolerance: the

effectiveness of the system does not deteriorate appreciably

until a certain proportion of routers become nonprobabilistic.

This nonlinear shape together with phase transition behavior

suggests that the collective behavior of the model is not sim-

ply an aggregation of the effect of individual routers. Rather,

the interaction among routers, which is indirectly mediated

by packets passing through, is playing a role in the collective

behavior of the model system.

IV. DISCUSSION

The emergent behavior observed here with our model is

rather intricate to analyze theoretically, particularly in deal-

FIG. 1. Model network architecture and phase transition behav-

ior with deterministic routing measured in average lifetime of a

packet #L$ as we vary packet creation rate ' . The system size is

varied as N" 25 %diamond&, 50 %star&, 100 %square&, 150 %triangle&,
and 250 %circle&. The lines are drawn for the reader’s convenience.

FIG. 2. Comparison of the phase transition behavior of the de-

terministic %a& and the probabilistic (!"0.008) %b& routing for #L$.
The system size is N"25. A similar graph is obtained for other

values of N .
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Ohira and Sawatari, 1998:
• 2D lattice
• packets (cars) start at boundary
• nodes have unlimited queue (no cascades)
• shortest route 
• probabilistic routing  

Optimal 
amount of 

randomness in 
choosing 
alternate, 

longer routes



- Physicists love these models! - 

• Influence of network topology:
➡ Zhao et al, 2005: random & scale-free networks are less 

congested than lattices IF processing capacity ∼ degree
➡ SAME congestion threshold on all networks if 

processing capacity ∼ betweenness
➡ Toroczkai and Bassler, 2004: gradient aware flow. 

➡ Congestion factor (% of nodes with no incoming trafic) 
grows with system size in random networks
➡ it is constant in scale-free networks -> scalable!

• The “Shannon limit” of networks:
➡ Sreenivasan and Toroczkai, 2007: for every physical 
network there exists a communication threshold that is 
entirely structural. No routing protocol can do better.



- Spreading Processes - 

SIS model in epidemiology:

• effective spreading rate λ

Homogeneous 
mixing

Spreading on 
networksTransient

Endemic
0

1
fraction of infected population

λλc

the phase transition, i.e., at !(t)!1. The first term on the

right-hand side "rhs# in Eq. "2# considers infected nodes be-
come healthy with unit rate. The second term represents the

average density of newly infected nodes generated by each

active node. This is proportional to the infection spreading

rate $ , the number of links emanating from each node, and

the probability that a given link points to a healthy node,

%1"!(t)& . In these models, connectivity has only exponen-
tially small fluctuations ('k2()'k() and as a first approxi-
mation we have considered that each node has the same

number of links, k!'k(. This is equivalent to an homogene-
ity assumption for the system’s connectivity. After imposing

the stationarity condition * t!(t)#0, we obtain the equation

!%"1$$'k("1"!#&#0 "3#

for the steady state density ! of infected nodes. This equation
defines an epidemic threshold $c#'k("1, and yields

!#0 if $%$c "4a#

!)$"$c if $&$c. "4b#

In analogy with critical phenomena, we can consider ! as the
order parameter of a phase transition and $ as the tuning

parameter, recovering a MF critical behavior %24&. It is pos-
sible to refine the above calculations by introducing connec-

tivity fluctuations "as it will be done later for SF networks,
see Sec. IV#. However, the results are qualitatively and quan-
titatively the same as far as we are only concerned with the

model’s behavior close to the threshold.

In order to compare with the analytical prediction we

have performed large scale simulations of the SIS model in

the WS network with p#1. Simulations were implemented
on graphs with number of nodes ranging from N#103 to
N#3'106, analyzing the stationary properties of the density
of infected nodes ! , i.e., the infection prevalence. Initially
we infect half of the nodes in the network, and iterate the

rules of the SIS model with parallel updating. In the active

phase, after an initial transient regime, the systems stabilize

in a steady state with a constant average density of infected

nodes. The prevalence is computed averaging over at least

100 different starting configurations, performed on at least

ten different realization of the random networks. In our

simulations we consider the WS network with parameter
K#3, which corresponds to an average connectivity

'k(#6.
As shown in Figs. 1 and 2, the SIS model on a WS graph

exhibits an epidemic threshold $c#0.1643(0.01 that is ap-
proached with linear behavior by ! . The value of the thresh-
old is in good agreement with the MF predictions $c

#1/2K#0.1666, as well as the density of infected nodes
behavior. In Fig. 2 we plot ! as a function of $"$c in
log-log scale. A linear fit to the form !)($"$c)

+ provides
an exponent +#0.97(0.04, in good agreement with the ana-
lytical finding of the Eq. "4b#.
To complete our study of the SIS model in the WS net-

work, we have also analyzed the epidemic spreading proper-
ties, computed by considering the time evolution of infec-
tions starting from a very small concentration of infected
nodes. In Fig. 3 we plot the evolution of the infected nodes
density as a function of time for epidemics in the supercriti-
cal regime ($&$c) that start from a single infected node.
Each curve represents the average over several spreading
events with the same $ . We clearly notice a spreading
growth faster than any power law, in agreement with Eq. "2#
that predicts an exponential saturation to the endemic steady

state. In the subcritical regime ($%$c), by introducing a

small perturbation to the stationary state !#0, and keeping
only first order terms in Eq. "2#, we obtain that the infection
decays following the exponential relaxation * t!(t)
#"'k(($c"$)!(t). This equation introduces a characteris-
tic relaxation time

,"1#'k("$c"$# "5#

FIG. 1. Density of infected nodes ! as a function of $ in the WS
network "full line# and the BA network "dashed line#.

FIG. 2. Log-log plot of density of infected node ! as a function
of $"$c in WS network, with $c#0.1643(0.01. The full line is a
fit to the form !)($"$c)

+, with an exponent +#0.97(0.04.

FIG. 3. Density of infected nodes !(t) as a function of time in
supercritical spreading experiments in the WS network. Network

size N#1.5'106. Spreading rates range from $"$c#0.002 to
0.0007 "top to bottom#.
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Partor-Satorras and 
Vespignani, 2001

SIR model: SIMILAR RESULT!



- So... how do we immunize? - 
Dezső and Barabási; Satorras and Vespignani, 2001

• Scale-free networks DO NOT respond to random 
immunization!
➡ random immunization does not restore the threshold

➡ need to target the hubs
Similar to 

failure (random 
event) vs. attack!

Liljeros et al. Nature 2001
4781 Swedes; 18-74; 
59% response rate.

• possible policy: choose 
random individual, ask 
them to name a friend!
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18 February 2009, as reported by official sources [33] and
analogously to other works [5]. We tested different locali-
zations of the first cases in census areas close to La Gloria
without observing relevant variations with respect to the
observed results. We also performed sensitivity analysis
on the starting date by selecting a seeding date anticipated
or delayed by 1 week with respect to the date available in
official reports [33]. The arrival time of infected individu-
als in the countries seeded by Mexico is clearly a combina-
tion of the number of cases present in the originating
country (Mexico) and the mobility network, both within
Mexico and connecting Mexico with countries abroad. For
this reason we integrated into our model the data on Mex-

ico-US border commuting (see Figure 2a), which could be
relevant in defining the importation of cases in the US,
along with Mexican internal commuting patterns (see Fig-
ure 1) that are responsible for the diffusion of the disease
from rural areas as La Gloria to transportation hubs such
as Mexico City. In addition, we used a time-dependent
modification of the reproductive number in Mexico as in
[6] to model the control measures implemented in the
country starting 24 April and ending 10 May, as those
might affect the spread to other countries.

In order to ascertain the effect of seasonality on the
observed pattern, we explored different seasonality

Schematic illustration of the GLobal Epidemic and Mobility (GLEaM) modelFigure 1
Schematic illustration of the GLobal Epidemic and Mobility (GLEaM) model. Top: census and mobility layers that 
define the subpopulations and the various types of mobility among those (commuting patterns and air travel flows). The same 
resolution is used worldwide. Bottom: compartmental structure in each subpopulation. A susceptible individual in contact with 
a symptomatic or asymptomatic infectious person contracts the infection at rate ! or r!! [30,32], respectively, and enters the 
latent compartment where he is infected but not yet infectious. At the end of the latency period, each latent individual 
becomes infectious, entering the symptomatic compartments with probability 1 - pa or becoming asymptomatic with probabil-
ity pa [30,32]. The symptomatic cases are further divided between those who are allowed to travel (with probability pt) and 
those who would stop traveling when ill (with probability 1 - pt) [30]. Infectious individuals recover permanently with rate ". 
All transition processes are modeled through multinomial processes.

- Would you like it more realistic? - 

Vespignani and Colizza, July 2009

GLobal Epidemic and 
Mobility (GLEaM) model

outbreak near 
La Gloria in 
Mexico, Feb. 
18, 2009
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schemes. The seasonality is modeled by a standard forcing
that rescales the value of the basic reproductive number
into a seasonally rescaled reproductive number, R(t),
depending on time. The seasonal rescaling is time and
location dependent by means of a scaling multiplicative
factor generated by a sinusoidal function with a total
period of 12 months oscillating in the range !min to !max,
with !max = 1.1 days (sensitivity analysis in the range 1.0
to 1.1) and !min a free parameter to be estimated [17]. The
rescaling function is in opposition in the Northern and
Southern hemispheres (see Additional file 1 for details).
No rescaling is assumed in the Tropics. The value of R0
reported in the Tables and the definition of the baseline is
the reference value in the Tropics. In each subpopulation
the R(t) relative to the corresponding geographical loca-
tion and time of the year is used in the simulations.

The seasonal transmission potential of the H1N1 strain is
assessed in a two-step process that first estimates the

reproductive number in the Tropics region, where season-
ality is assumed not to occur, by focusing on the early
international seeding by Mexico, and then estimates the
degree of seasonal dumping factor by examining a longer
time period of international spread to allow for seasonal
changes. The estimation of the reproductive number is
performed through a maximum likelihood analysis of the
model fitting the data of the early chronology of the
H1N1 epidemic. Given a set of values of the disease
parameters, we produced 2 × 103 stochastic realizations of
the pandemic evolution worldwide for each R0 value. Our
model explicitly takes into account the class of sympto-
matic and asymptomatic individuals (see Figure 1) and
allows the tracking of the importation of each sympto-
matic individual and of the onset of symptoms of exposed
individuals transitioning to the symptomatic class, as
observables of the simulations. This allows us to obtain
numerically with a Monte Carlo procedure the probability
distribution Pi(ti) of the importation of the first infected

Illustration of the model's initialization and the results for the activity peaks in three geographical areasFigure 2
Illustration of the model's initialization and the results for the activity peaks in three geographical areas. (a) 
Intensity of the commuting between US and Mexico at the border of the two countries. (b) The 12 countries infected from 
Mexico used in the Monte Carlo likelihood analysis. The color scale of the arrows from red to yellow indicates the time order-
ing of the epidemic invasion. Panels (c), (d) and (e) show the daily incidence in Lower South America, South Pacific and North 
America/Western Europe, respectively. The shaded area indicates the 95% confidence interval (CI) of the peak time in the cor-
responding geographical region. The median incidence profiles of selected countries are shown for the two values defining the 
best-fit seasonality scaling factor interval.

N1H1 
predictions



Effects of systematic antiviral treatment
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drugs stockpiles available (source data from [51,52] and
national agencies), until the exhaustion of their stockpiles
[4]. We have modeled this mitigation policy with a con-
servative therapeutic successful use of drugs for 30% of
symptomatic infectious individuals. The efficacy of the AV
is accounted in the model by a 62% reduction in the trans-
missibility of the disease of an infected person under AV
treatment when AV drugs are administered in a timely
fashion [30,32]. We assume that the drugs are adminis-
tered within 1 day of the onset of symptoms. We also con-
sider that the AV treatment reduces the infectious period
by 1 day [30,32]. In Figure 3 we show the delay obtained
with the implementation of the AV treatment protocol in
a subset of countries with available stockpiles. As an
example, we also show the incidence profiles for the cases
of Spain and Germany, where it is possible to achieve a
delay of about 4 weeks with the use of 5 million and 10
million courses of AV, respectively. The results of this mit-
igation might be extremely valuable in providing the nec-
essary time for the implementation of the mass
vaccination program.

Conclusion
We have defined a Monte Carlo likelihood analysis for the
assessment of the seasonal transmission potential of the
new A(H1N1) influenza based on the analysis of the chro-
nology of case detection in affected countries at the early

stage of the epidemic. This method allows the use of data
coming from the border controls and the enhanced sur-
veillance aimed at detecting the first cases reaching unin-
fected countries. This data is, in principle, more reliable
than the raw count of cases provided by countries during
the evolution of the epidemic. The procedure provides the
necessary input to the large-scale computational model
for the analysis of the unfolding of the pandemic in the
future months. The analysis shows the potential for an
early activity peak that strongly emphasizes the need for
detailed planning for additional intervention measures,
such as social distancing and antiviral drugs use, to delay
the epidemic activity peak and thus increase the effective-
ness of the subsequent vaccination effort.
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Delay effect induced by the use of antiviral drugs for treatment with 30% case detection and drug administrationFigure 3
Delay effect induced by the use of antiviral drugs for treatment with 30% case detection and drug administra-
tion. (a) Peak times of the epidemic activity in the worst-case scenario (black) and in the scenario where antiviral treatment is 
considered (red), for a set of countries in the Northern hemisphere. The intervals correspond to the 95% confidence interval 
(CI) of the peak time for the two values defining the best-fit seasonality scaling factor interval. (b, c) Incidence profiles for 
Spain and Germany in the worst-case scenario (black) and in the scenario where antiviral treatment is considered (red). 
Results are shown for !min = 0.6 only, for the sake of visualization. A delay of about 4 weeks results from the implemented mit-
igation.
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- More topics you can read up on - 

• Pick your favourite model in classical statistical mechanics
• Synchronization phenomena
• Walking and searching on networks
• Social networks
➡ rumor and news spreading phenomena
➡ voter models, coalition formation
➡ economic models on networks

• Biological networks
The rest of the 

course...
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Slides and organized citations: on line by evening of lecture.

3. Modeling transcriptional regulation, 
one promoter at a time


