The complexity of
cellular networks

Warning: Statistical physics.
It only works on average.

http://regan.med.harvard.edu/CVBR-course.php




2. Dynamics on Complex Networks
- What do networks do? -

They CONNECT their nodes.




- Robustness and Vulnerability -

Albert & Barabasi, 2000 : the Achilles Heel of the Internet
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- Statistical physics loves these models! -

® random failure scenarios map to percolation problems
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= percolation threshold in scale-free networks is at pc = O

® assortative networks

= more resilient to random failure
= more vulnerable to attack




- Cascading failures -
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- Cascading failures -

Reason: when a node fails, it stops doing

? its share. Neighbours become overworked. |

Motter and Lai, 2002:

* load bearing capacity ~ betweenness

* every pair of nodes exchanges 1
packet / timestep

scale-free networks MORE
vulnerable to cascading
failure of random nodes

* Importance of largest
betweennes nodes! ISAT GeoStar 45

23215 EST 14 Aug.




- A surprising quick-fix -

iTIR I A0 [0S REMOVE / DISCONNECT nodes that carry small
amounts of load:
® then generate more load than they carry
® their paths to the system are large -> burden many
intermediary nodes

* no defence
® removal of least central edges
O removal of least central nodes
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- Predicted to work in E.colis TCA cycle!
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- Congestion -

Ohira and Sawatari, 1998:

Packet lifetime

e 2D lattice

* packets (cars) start at boundary

* nodes have unlimited queue (no cascades)
e shortest route

* probabilistic routing

Packet creation rate

Optimal

~ amount of |
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 choosing |
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- Physicists love these models! -

® Influence of network topology:
™= Zhao et al, 2005: random & scale-free networks are less

congested than lattices IF processing capacity ~ degree

"™ SAME congestion threshold on all networks if

processing capacity ~ betweenness

"™ Toroczkai and Bassler, 2004: gradient aware flow.

"™ Congestion factor (% of nodes with no incoming trafic)
grows with system size in random networks
= it is constant in scale-free networks -> scalable!

® The “"Shannon limit” of networks:

"™ Sreenivasan and Toroczkai, 2007: for every physical
network there exists a communication threshold that is
entirely structural. No routing protocol can do better.




- Spreading Processes -

SIS model in epidemiology: Homogeneous

s | <— (D mixing

e effective spreading rate A

fraction of infected population )
_ Spreading on

networks ;

Partor-Satorras and
Vespignani, 2001

SIR model: SIMILAR RESULT!



- So... how do we immunize? -

DezsO and Barabasi; Satorras and Vespignani, 2001

® Scale-free networks DO NOT respond to random

immunization!
™= random immunization does not restore the ’rhreshold
"™ need to target the hubs g
Similar to
~ failure (random |
\ _event) vs. attack!
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- Would you like it more realistic? -

population layer mobility layers

geographic scale

Vespignani and Colizza, July 2009

GLobal Epidemic and
Mobility (GLEaM) model
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Effects of systematic antiviral treatment
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_* Buys time for |
\ Mmass vaccinations /




- More topics you can read up on -

® Pick your favourite model in classical statistical mechanics
® Synchronization phenomena

® Walking and searching on networks

® Social networks

"™ rumor and news spreading phenomena
= voter models, coalition formation
= cconomic models on networks

® Biological networks

{ The rest of the ’
course...




Slides and organized citations: on line by evening of lecture.

3. Modeling transcriptional regulation,
one promoter at a time
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